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Abstract—Unmanned aerial vehicles (UAVs) have become in-
creasingly valuable military assets and reliance upon them will
continue to increase. Despite lacking an on-board pilot, UAVs
require crews of up to three human operators. These crews
are already experiencing high workload levels, a problem that
will likely be compounded as the military envisions a future
where a single operator controls multiple UAVs. To accomplish
this goal, effective scheduling of UAVs and human operators is
crucial to future mission success. We present a mathematical
model for simultaneously routing UAVs and scheduling human
operators, subject to operator workload considerations. This
model is thought to be the first of its kind. Numerical examples
demonstrate the dangers of ignoring the human element in UAV
routing and scheduling.

Index Terms—Integer programming, Aircraft control hu-
man factors, Human-machine interactions, Cooperative systems,
Scheduling

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), which were first de-
ployed for surveillance purposes and are now capable of
launching missile strikes, have become increasingly valuable
assets to the U.S. Armed Forces. In 2007, up to 15 U.S.
Air Force UAVs were in use somewhere in the world at any
given time; by the summer of 2011 that number had increased
to 60 [1]. While UAVs do not have onboard pilots, these
aircraft require a significant amount of human interaction.
For example, the Air Force’s MQ-1 Predator UAV employs
a ground crew of three, including a pilot, a sensor operator
and a mission intelligence coordinator [2]. The importance
of humans to UAV effectiveness is stated succinctly in the
2010–2035 U.S. Army Unmanned Aircraft Systems Roadmap
[3]: “Unmanned systems are only as capable as their human
operators.”

These operators are already exposed to the high-demand,
high-tempo of UAV operation tasks [4], [5]. According to
a recent survey study on the occupational burnout of UAV
operators in which 600 Predator/Reaper operators and 264
Global Hawk operators participated, 27% and 15% of the
Predator/Reaper group responded that they were “stressed”
and “very to extremely stressed,” respectively; 31% and 19%
of the Global Hawk Group did so [4]. Excessive occupational
stresses degrade operators’ quality of life and could hinder
recruiting and retention of UAV operators.

This problem is likely to be exacerbated, as the military
seeks future operators to simultaneously control multiple
UAVs from a single ground station [3]. While advances in
automation will facilitate the achievement of this goal, much
of the technology is immature and will not be implemented in

the near term. Furthermore, some activities will likely never
be automated, as “It is widely accepted that weapons release
will always have a human decision maker responsible for the
judgment of the engagement” [3]. Therefore, it is likely that
human operators will be called upon to multitask more. Un-
fortunately, overload due to multitasking during UAV control
tasks can compromise task performance [6] and increase the
likelihood of a mishap or mission failure [7], [8].

Various human factors studies have investigated different
means to mitigate operator overload problems associated with
unmanned vehicle control missions, including automation [9]–
[11] and multi-modal interface design [12], [13]. Also, many
empirical studies have investigated the effects of operator-to-
vehicle ratio on performance and workload [14]–[16]. Most of
these past studies were focused on addressing workload issues
or enhancing performance at the single operator/workstation
level. Few studies seem to have considered coordinating mul-
tiple human and machine assets through task scheduling at the
global system level so as to ensure achieving overall mission
objectives with limited human and machine resources. In fact,
the authors are not aware of any such studies at the moment.

The objective of this paper is to develop a mathematical
programming model, appropriate for generating initial mission
plans, that effectively schedules both vehicles and humans to
time-sensitive, geographically-dispersed tasks. We empirically
demonstrate the impact of neglecting human factors consider-
ations when developing aircraft routes, and show how overall
mission effectiveness may be improved by incorporating hu-
man factors elements into the routing of unmanned aircraft.
Such an approach is critical to meet the military’s goal of
increasing the ratio of aircraft controlled by personnel. While
the proposed model was inspired by UAV operations, it has
broader applications for unmanned land- or sea-based vehicles.

This paper is organized as follows. A detailed problem
description is provided in Section II. Section III contains
a review of relevant literature pertaining to aircraft routing
and UAV operator performance. A mathematical programming
formulation for UAV routing and operator scheduling is pro-
posed in Sections IV and V. Section VI provides a numerical
example to demonstrate the need for such a model. Finally,
a summary and suggestions for further research are contained
in Section VII.

II. PROBLEM DESCRIPTION

We consider a fleet of heterogeneous UAVs that are assigned
to perform a variety of geographically-dispersed priority-based
tasks. Each task must be performed within a pre-defined
time window, thus reflecting the time-critical nature of this
problem. UAVs may have differing capabilities, based on
their configurations, operating characteristics, environmental
conditions, and payload (e.g., infrared cameras or a variety of
sensors). Each UAV may begin the mission at any location
in the battlespace, but must end its route at a base (depot)
location prior to exhausting its fuel supply.

When a UAV is assigned to a task it must continue per-
forming the task uninterrupted for a pre-specified duration.
Human supervision may be required during the execution
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of each task. For example, humans may observe streaming
video feeds captured by the UAV, launch/guide missiles, or
manually control the aircraft. The “amount” or “cost” of
human involvement required may be based on the difficulty
or importance of each task.

In support of the military’s future vision of individual hu-
man operators controlling multiple UAVs, we assume that op-
erators may supervise multiple tasks simultaneously. However,
at any time, human operators are limited in the amount of time
or effort they may expend performing tasks, as determined by
operator-specific workload thresholds. Unlike operators, UAVs
are prohibited from performing multiple tasks simultaneously.

We consider three hybrid activities that may be performed
by each human operator, with potentially differing levels
of effectiveness (due to training or experience). First, we
consider activities related to controlling a UAV as it executes
a particular task. These activities may include piloting the
aircraft, maintaining situational awareness, gathering target
information, laser-marking targets for weapons guidance, and
communicating with friendly forces. Second, we consider
activities related to navigating a UAV between targets. This
may include piloting the aircraft, communicating with friendly
forces, and detecting potential threats. Finally, we consider
activities related to sensor data analysis, including battle
damage assessment, target detection and identification, and
“determining hostile intentions.” These activities are motivated
by the 12 currently-identified duties of MQ-1 Predator and
MQ-9 Reaper pilots [17] and the 12 duties of sensor operators
[18] on the same platforms. The three activities proposed
in our model were chosen to reflect future task automation
required to increase UAV-to-operator ratios, and to improve
tractability of the mathematical model.

In an effort to increase the model’s usefulness, a variety
of objectives are proposed, such as maximizing the overall
effectiveness of assigning the most appropriately-configured
aircraft to the highest priority targets, minimizing excessive
operator workload, and maximizing operator effectiveness. As
this is the first model of its kind, we will assume that all target
locations and task durations are known a priori. In the event
that battlespace conditions change, the proposed model may
be re-executed to determine an updated mission plan.

III. RELATED LITERATURE

In general, previously-published UAV-routing models have
not addressed the human element. As a result, mission plans
proposed by such models are likely to produce conflicts with
human operators on the ground. This may reduce operator
effectiveness, as overworked operators may be prone to er-
rors. It may also mean that surveillance data captured by
aircraft cannot be analyzed in a timely manner. Meanwhile,
previously-published human-factors studies have investigated
the effects of work overload, and have demonstrated the need
to coordinate both man and machine to ensure that mission
objectives are achieved. However, proposals of models capable
of generating detailed task schedules for airborne and ground-
based assets have been beyond the scope of these studies.
For example, [19] proposed a decision support system that

assists a single operator in requesting re-scheduling of tasks
from multiple UAVs. When operators make the request (which
may not be granted) to delay a certain UAV task, the system
highlights where scheduling problems may occur in the future.
While the system promises to improve an existing plan, this
approach is reactive and does not generate optimal plans.

To the best of our knowledge, only [20] have addressed
the problem of optimally scheduling UAVs and humans si-
multaneously. They employ a queueing model for a dynamic
assignment problem, where identical UAVs and humans are
servers and targets appear over time. These targets are assumed
to be homogeneous, as the role of the human is to classify each
target as “friend” or “foe.” Time windows for targets are not
considered.

In light of the scarcity of research directly related to our
problem, we address the relevant literature in terms of efforts
focused on the human factors considerations and optimization
approaches to scheduling separately.

A. Human Factors Studies

Numerous empirical studies have been conducted to exam-
ine factors affecting operator workload and performance dur-
ing the operation of UAV, unmanned ground vehicle (UGV),
and other types of artificial agents mostly in the military
context. An excellent review of previous literature categorizing
the existing studies according to the factors examined is
provided in [21].

A number of studies investigated the effects of display
characteristics that affect operator perception. For example,
[22] and [14] tested the effects of delays in computer image
processing on operator workload during UAV or UGV tasks.
The effects of camera characteristics, such as the range,
perspective, or orientation of the viewpoints provided by the
artificial agents are examined in [23] and [24]. Schipani [25]
examined how image and environmental complexity affects
workload ratings during UGV navigation. The results from
these studies may provide guidelines for display design so as
to reduce operator workload and improve task performance.

A group of studies were focused on the effects of task
performance demands. Galster et al. [26] examined the effects
of number of targets on errors, efficiency, and workload during
a target processing task. Hendy et al. [27] examined the
effects of time pressure in air-traffic control. Many studies
investigated the effects of number of artificial agents controlled
by a single operator on performance and workload, focusing
on the costs and benefits of controlling multiple agents [14]–
[16], [28], [29].

Finally, some studies investigated the effects of automation
on human operator workload and combined performance of
man-machine systems. For example, [30], [31], and [29] exam-
ined how different levels of autonomy affect task performance
and operator workload. Some studies also examined the effects
of automated aid reliability [10], [32]–[34].

Research findings and empirical human workload and per-
formance data from studies such as the above would serve as
a basis for developing task scheduling models that coordinate
multiple human and machine assets.
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The empirical approach described above cannot be utilized
to evaluate a system if the system is only a concept and
a physical mockup is not available. A number of workload
prediction tools have been developed to estimate operator
workloads associated with conceptual designs. An example
of such workload prediction tools is the Army Research
Laboratory’s improved performance research integration tool
(IMPRINT) [35]. IMPRINT predicts operators’ workload-time
profiles during a mission given an input scenario describing:
human activities during the mission, their time windows and
workload levels, crewmember assignments and available au-
tomation aids. Based on the input scenario, a discrete event
simulation is performed and each crewmember’s workload-
time profile during the mission is estimated. This process
is referred to as workload task analysis (WLTA) [36]. The
simulation results identify the peaks of mental workload for
each crewmember and can guide redesigning the system so as
to alleviate severe overloads. Also, the simulation results can
facilitate designing effective and efficient training strategies
by helping training system designers address the questions of
what to train and how best to train [36].

B. Optimization Approaches

Extensive research has been conducted on the development
of mathematical models for UAV routing and scheduling,
including models suitable for determining initial mission plans
(c.f., [37], [38]) and those designed for dynamic re-routing
(c.f., [39]). These models consider only UAV assignments,
ignoring the human elements. Similarly, several approaches
to scheduling tasks to humans, without determining optimal
UAV routes, have been proposed. For example, [40] consider
the problem of assigning a single operator to multiple UAV
tasks, where UAV routes are pre-specified and operators are
prohibited from multitasking. Savla and Frazzoli [41] apply a
queueing theoretic approach to scheduling operators, where
the service time of an operator depends on the operator’s
prior workload. Again, the determination of UAV routes is
not considered.

We should also mention that while air traffic control (ATC)
problems involve the assignment of human controllers to air-
craft, these problems do not require the controllers to actually
pilot the planes or analyze sensor data captured from them. For
example, [42] developed a mixed integer math programming
model for use by air traffic controllers in which humans may
perform six task types. However, multi-tasking is not allowed
and plane flight paths are predetermined.

Another related area is in the field of human-robot inter-
action. Crandall et al. [43] consider the problem of assigning
a human operator to oversee multiple semi-autonomous, ho-
mogeneous, robots. Mau and Dolan [44] presents a modified
shortest processing time heuristic for scheduling a single
human to supervise multiple robots, where the human may
only supervise one robot at a time.

Finally, in the broader context of scheduling and opera-
tions research, we note that several studies have looked at
optimization with human factors considerations in industrial
settings. For example, [45] proposed a mathematical model

for assigning workers in cellular manufacturing, where worker
skill levels may be increased by training. Tharmmaphornphilas
et al. [46] and Tharmmaphornphilas and Norman [47] provided
mathematical models to determine job rotation schedules for
humans, with an objective of minimizing ergonomic risk.
Wirojanagud et al. [48] optimized the number of workers,
the assignment of workers to machine centers (groups of
machines), and the production rate in a problem where hu-
mans have differeng skill levels. A math programming model
for ergonomic considerations in assembly line balancing is
provided by [49]. Lodree et al. [50] proposed a framework for
sequencing order-picking tasks in a warehouse, and provide
an extensive review of literature related to human factors
in scheduling theory. These studies demonstrate the growing
interest in, and importance of, considering both man and
machine. However, these approaches are not applicable to our
problem of interest, as models designed for manufacturing
or industrial settings involve tools in fixed locations, where
machine routing is not a consideration.

IV. VEHICLE ASSIGNMENT AND ROUTING CONSTRAINTS

In this section we describe the mathematical formulation
of the constraints governing UAV routes. This formulation is
based on the dynamic aircraft re-assignment model presented
by [39], and therefore does not incorporate human factors
considerations. However, such considerations are addressed by
the constraints in Section V, which also contains mathematical
formulations of several potential objective functions.

A. Notation

We define M to be the set of required (mission-critical)
tasks that may be assigned to UAVs. Each task j ∈ M must
be performed by as few as umin

j , and by as many as umax
j ,

aircraft. Task j has a priority value of pj , such that larger
values of pj represent greater importance of the task. A fleet
of heterogeneous UAVs, represented by the set V , are available
to perform tasks, such that the set Vj ⊆ V represents the set
of vehicles that are capable of performing task j. Because
each vehicle may be uniquely equipped, the parameter ev,j
represents the effectiveness level of vehicle v when performing
task j.

We utilize a time-discretization approach, such that the time
horizon of the mission is partitioned into a discrete set of
time intervals, given by the set T = {t0, t0 + 1, . . .}, where
t0 represents the initial time interval of the mission. Vehicles
assigned to task j ∈ M must begin performance of the task
during a time interval t ∈ Tj ⊆ T . This captures the fact
that tasks may be time-sensitive. If umin

j ≥ 2, then multiple
UAVs are required to perform task j. However, these UAVs do
not need to be assigned to the task at the same starting time
(provided that all assigned vehicles begin the task at some
t ∈ Tj). The duration of task j is given by dTj ≥ 0, and is
measured in units of discrete time intervals.

Vehicle routes (schedules) are defined to be a sequence of
visits to nodes (or waypoints), where a node in the network
may represent the initial location of vehicle v (denoted as
∆0

v), a task location (j ∈M ), or a base location that may be
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visited by v (b ∈ Bv). Each vehicle v begins its route at node
∆0

v and ends its route at a base node. If the vehicle’s initial
location corresponds to a base, we let B′v represent the node
number of the base. Otherwise, if v begins its route at a non-
base location (perhaps already in-flight), we let B′v = ∅. This
distinction is important, as the initial location of each vehicle
is necessary to determine its remaining flight endurance. The
flight endurance, as limited by the vehicle’s fuel capacity, is
given by gv , which is expressed as the integer number of time
intervals for which the vehicle may remain in service.

To facilitate construction of the necessary constraints, we
define ∆+

v to be the set of all nodes that may be visited
by vehicle v. This includes tasks and bases. Similarly, ∆−v,j
is defined to be the set of all nodes from which vehicle
v may travel to node j. This may include the initial node
(∆0

v) or other task nodes. Because vehicles are assumed to be
prohibited from re-entering service after returning to a base,
base nodes are not contained in ∆−v,j . To capture vehicle-
dependent travel time between tasks, the parameter fv,i,j
represents the integer number of time intervals required for
vehicle v to travel from node i to node j in the network. If
node i is a task, fv,i,j also includes the duration of task i, dTi .

B. Integer Programming Constraints

From the perspective of scheduling UAVs to tasks, two types
of decision variables are required. The first of which, xt,v,i,j ,
is binary, such that xt,v,i,j = 1 if vehicle v is assigned to
begin performing task j ∈ M at time interval t ∈ Tj , given
that v travels arc (i, j). The second decision variable, zj ∈
{0, 1, . . . , umin

j }, represents an “infinite” resource (IR). This
is a fictitious asset that is employed by the model solely to
guarantee mathematical feasibility in cases where insufficient
vehicles are available to perform tasks. The use of an IR is
highly penalized in the objective function. The inclusion of
IRs ensure that decision-makers are provided feedback as to
where asset capacity shortfalls or timing conflicts exist, rather
than simply being instructed that the problem is infeasible.
Thus, a non-zero value of zj indicates the gap between the
minimum required number of resources and the actual number
of resources assigned to task j.

Given these two decision variables, the mathematical rep-
resentation of UAV-assigned tasks is given by the following
constraints.

umin
j ≤

∑
v∈Vj

∑
t∈Tj

∑
i∈∆−v,j

xt,v,i,j + zj ≤ umax
j ∀ j ∈M, (1)

∑
t∈Tj

∑
i∈∆−v,j

xt,v,i,j ≤ 1 ∀ j ∈ {M : umax
j ≥ 2}, v ∈ Vj , (2)

∑
j∈{∆+

v :t∈Tj}

∑
i∈∆−v,j

xt,v,i,j ≤ 1 ∀ v ∈ V, t ∈ T, (3)

∑
j∈{∆+

v :∆0
v∈∆−v,j}

∑
t∈Tj

xt,v,∆0
v,j

= 1 ∀ v ∈ V, (4)

∑
t∈{Tj :t<t0+fv,∆0

v,j}

xt,v,∆0,j = 0

∀ v ∈ V, j ∈ {∆+
v : ∆0

v ∈ ∆−v,j}, (5)

∑
j∈Bv

∑
i∈∆−v,j

∑
t∈{Tj :t≤t0+gv}

xt,v,i,j = 1

∀ v ∈ {V : B′v = ∅}, (6)

t0 + 1 ≤
∑
j∈Bv

∑
i∈∆−v,j

∑
t∈Tj

txt,v,i,j

≤
∑
j∈∆+

v

∑
t∈Tj

(t− fv,∆0
v,j

+ gv)xt,v,∆0
v,j

∀ v ∈ {V : B′v 6= ∅}, (7)∑
i∈∆−v,j

∑
t∈Tj

xt,v,i,j =
∑

k∈{∆+
v :j∈∆−v,k}

∑
t∈Tk

xt,v,j,k

∀ v ∈ V, j ∈M, (8)∑
i∈∆−v,j

∑
t∈Tj

txt,v,i,j ≤
∑

k∈{∆+
v :j∈∆−v,k}

∑
t∈Tk

(t− fv,j,k)xt,v,j,k

∀ v ∈ V, j ∈M, (9)

xt,v,i,j ∈ {0, 1} ∀ v ∈ V, j ∈ ∆+
v , i ∈ ∆−v,j , t ∈ Tj , (10)

zj ∈ {0, 1, . . . , umin
j } ∀ j ∈M. (11)

Constraint (1) states that each task j ∈M must be performed
by at least umin

j , and by no more than umax
j , resources.

Constraint (2) ensures that constraint (1) cannot be satisfied by
simply assigning the same resource to task j at multiple times;
this constraint is only necessary if it is actually allowable
to assign multiple resources to the task (i.e., if umax

j ≥ 2).
Constraint (3) prohibits vehicles from being assigned to more
than one node during any given time interval. Constraint
(4) ensures that each vehicle begins its route by departing
from its initial location, ∆0

v . Constraint (5) ensures that each
vehicle’s first assigned task is at a feasible time. Thus, vehicle
v cannot be assigned to node j before fr,∆0

v,j
time intervals

have passed. Constraints (6) and (7) require vehicles to visit
a base location prior to exhausting fuel supplies. Constraint
(8) states that the number of times a vehicle visits a node
must equal the number of times the vehicle leaves the node.
Constraint (9) states that if vehicle v travels from j to k, then it
must have previously traveled from i to j. Finally, Constraints
(10) and (11) describe the definitions of the necessary decision
variables.

V. OPERATOR SCHEDULING

In addition to routing UAVs to targets, human operators
must also be scheduled to activities. The set H represents
the collection of human operators that are available for the
mission. In this paper we consider three distinct types of
activities that may be performed by human operators:

1) Control aircraft during the execution of a task (on-
target). This may involve remotely piloting the aircraft,
configuring on-board sensors, or managing communi-
cations between on-ground forces. For example, if an
aircraft’s task is to bomb an enemy target, an operator’s
activity could be to move the aircraft into position and
manually fire the weapons. Let MC ⊆ M represent the
set of all tasks that require human control.

2) Control aircraft that are en-route from one task
to another (on-path). Here, the UAV is not actively
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engaged in the performance of a task. However, perhaps
due to hazardous conditions, it may be necessary for the
aircraft to be manually piloted or monitored. To capture
the complexity of this on-path activity, we let Γ represent
a set of tuples, each of the form 〈v, i, j〉. Each tuple
represents a distinct combination of a vehicle v ∈ V that
requires human control when traveling from node i to
node j.

3) Analyze data collected from aircraft. Much of the
raw data captured from UAVs – such as video, sensor
readings, or audio transmissions – must be interpreted by
human operators. These operators might not be actively
engaged in controlling the aircraft. Let MA ⊆ M
represent the set of all tasks that require human analysis.

For the first two types of activities, in which operators
control the aircraft, one or more humans must be assigned
during the performance of the UAV task simultaneously.
However, for “analysis” activities, humans may be assigned to
address the UAV task within some pre-defined lag period after
the UAV task is completed. For example, if a UAV captures
video of a target, it may be permissable for an analyst to study
this footage after the fact. Like aircraft, it is assumed that each
human operator performs these activities without preemption.

A. Operator Control of UAVs on Task

Operator control of UAVs requires the simultaneous as-
signment of human and aircraft. Let eCh,j > 0 represent the
effectiveness of human operator h ∈ H while controlling a
UAV performing task j ∈MC . This parameter acknowledges
the fact that some operators may be more highly-skilled at
performing certain tasks, and thus will be more effective. Let
EC

j > 0 represent the total required human effectiveness for
controlling a UAV as it performs task j ∈ MC . If a task
requires a relatively large amount of human supervision (e.g.,
authorizing and firing a missile at a target) the value of EC

j

should be larger than for tasks that require little supervision
(e.g., verifying that the UAV has successfully performed a
task). We define dCj to be the number of time intervals required
for an operator to control UAVs performing task j, such that
dCj = dTj . Because the human operator must perform the
control activity simultaneously with the UAV, the allowable
time window for these activities is given by TC

j = Tj for all
j ∈MC .

Figure 1 shows a possible assignment of one human op-
erator, h, to control aircraft v while performing task j. Note
that the allowable time window (represented by the lightly-
shaded box) defines allowable start times for beginning the
task. Therefore, it is acceptable for both the UAV and the
human operator to continue performing the task after the time
window has closed (provided that the activity started within
the time window).

Two types of decision variables are required to describe
the assignment of operators to control activities. The first,
binary variable oCt,h,j , equals one if human operator h ∈ H is
assigned to control a vehicle while it performs task j ∈ MC

during time interval t ∈ TC
j . In the event that there is

an insufficient supply of human operators, we define the

time
1 2 3 4 5 6 7 8 9 10

v

h

Tj

TC
j

dTj

dCj

Figure 1: Operator control of UAV on target.

integer decision variable zCt,j to represent the “infinite” human
operator (IO) needed to perform a control activity on task
j ∈ MC during time interval t ∈ Tj . To discourage its
use, this decision variable is highly-penalized in the objective
function. A positive value of zCt,j in the optimal solution
would indicate to a decision-maker that additional human
operators are required to adequately supervise certain tasks
in the mission.

The necessary constraints for UAV control on a task are
given by:∑

h∈Hj

eCh,j o
C
t,h,j + zCt,j ≥

∑
v∈V

∑
i∈∆−v,j

EC
j xt,v,i,j

∀ j ∈MC , t ∈ TC
j , (12)

oCt,h,j ≤
∑
v∈V

∑
i∈∆−v,j

xt,v,i,j ∀ h ∈ H, j ∈MC , t ∈ TC
j , (13)

oCt,h,j ∈ {0, 1} ∀ h ∈ H, j ∈MC , t ∈ TC
j , (14)

zCt,j ≥ 0 ∀ j ∈MC , t ∈ TC
j . (15)

Constraint (12) requires that each vehicle performing task j ∈
MC is supported by a minimum total effectiveness level across
all operators. In the event that an insufficient number of skilled
operators are available to begin the control activity at time t, an
IO is included. Constraint (13) prohibits operators from being
assigned to control activities during times when no vehicle is
beginning performance of task j. Constraints (14) and (15)
describe the nature of the required decision variables.

B. Operator Guidance of UAVs Between Tasks

UAVs traveling between tasks may require a degree of
human interaction that differs from the control of a UAV
on a fixed target. As each UAV task has time windows in
which the task may be performed, it is likely that the UAV
may be forced to loiter if it arrives before the task’s time
window has opened. We assume that, as a UAV travels from
task i to task j, any required loitering will take place at the
location of task i, and that no operators are required to oversee
the loitering. Thus, an operator is required only while the
vehicle is en route. Recall that the parameter fv,i,j includes
the time required for vehicle v to perform task i, dTi , as well
as the time required for v to travel from i to j. Therefore,
the allowable time window for which human operators may
begin guiding a particular UAV between nodes i and j is given
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by TP
v,i,j = [min{Tj} − (fv,i,j − dTi ),max{Tj} − 1] for all

〈v, i, j〉 ∈ Γ. The maximum value of TP
v,i,j is equal to the

maximum value of Tj minus one to account for the fact that
path control is not required once the vehicle arrives at node
j and begins service. Thus, max{TP

v,i,j} represents the latest
possible time that path control would be required. Figure 2
demonstrates the relationship between UAV travel and operator
assignments.

time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

v

h

Ti Tj

TP
v,i,j

loiter at i travel

fv,i,j − dTi = 3

dTi = 2

Figure 2: Operator control of UAV traveling between nodes i
and j.

For each 〈v, i, j〉 ∈ Γ, the required total operator effective-
ness is given by parameter EP

v,i,j , where human operator h
is capable of providing ePh,v,i,j units of effectiveness when
assigned to this activity. Two new decision variable types,
similar to those described above, are required for path-control
activities. The first type, binary decision variable oPt,h,v,i,j ,
assumes a value of one if operator h is assigned to perform a
path-control activity of vehicle v along arc (i, j), with the
activity beginning at time t. The second type of decision
variable, zPt,v,i,j , represents the IO.

The constraints required for path control are given by:

EP
v,i,jxt,v,i,j ≤

∑
h∈H

ePh,v,i,jo
P
t−(fv,i,j−dT

i ),h,v,i,j

+ zPt−(fv,i,j−dT
i ),v,i,j ∀ 〈v, i, j〉 ∈ Γ,

t ∈ {Tj : t− (fv,i,j − dTi ) > t0} (16)

oPt,h,v,i,j ≤ xt+fv,i,j−dT
i ,v,i,j

∀ h ∈ H, 〈v, i, j〉 ∈ Γ, t ∈ TP
v,i,j (17)∑

t∈TP
v,i,j

oPt,h,v,i,j ≤ 1 ∀ 〈v, i, j〉 ∈ Γ, h ∈ H (18)

oPt,h,v,i,j ∈ {0, 1} ∀ 〈v, i, j〉 ∈ Γ, h ∈ H, t ∈ TP
v,i,j (19)

zPt,v,i,j ≥ 0 ∀ 〈v, i, j〉 ∈ Γ, t ∈ TP
v,i,j (20)

Constraint (16) ensures that the required total skill level of
operators assigned to control v along path (i, j) is observed.
If the UAV begins performing task j at time t, then the path
guiding begins at time t − (fv,i,j − dTi ). The IO is included
to maintain mathematical feasibility. Constraint (17) prevents
operators from being assigned to control the path of v either
too early or too late. Constraint (18) prohibits h from re-
performing the path-guiding for this particular vehicle along
this particular path at a later time. Constraints (19) and (20)
describe the decision variable definitions.

C. Operator Analysis of UAV-gathered Data

UAVs capture enormous quantities of data, only a small
fraction of which is analyzed in real-time. Although there
have been efforts to automate data analysis activities, it is
expected that this process will remain manual in the immediate
future. Unlike the previously-described “control” and “path-
guiding” activities, the “analysis” activity may allow for looser
synchronization between UAV and operator. In other words,
it may be permissible for UAV-gathered data to be analyzed
after the fact. As such, we define Lmin

j (Lmax
j ) to be the

minimum (maximum) allowable number of time intervals that
may pass between the time that a UAV begins performance
of task j and the time that an operator begins analysis
activities of that task. If Lmin

j = Lmax
j = 0 then the analysis

must be performed simultaneously with the task itself. Thus,
the allowable time window for data analysis is given by:
TA
j =

[
min{Tj}+ Lmin

j ,max{Tj}+ Lmax
j

]
for all j ∈ MA.

The time required for human analysis of task j ∈MA is given
by dAj . This duration is not required to equal dTj , which is the
duration of task j.

Figure 3 shows an example assignment involving one UAV
and two operators. Note that v begins performing task j at
time interval 5. Therefore, analysis activities may begin as
early as time 5 +Lmin

j = 6, or as late as time 5 +Lmax
j = 10.

Also note that the allowable time window for analysis, TA
j ,

represents allowable start times for analysis. Thus, if dAj > 0,
it is possible that the analysis activity may extend beyond the
time window.

time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

v

h1

h2

Tj

TA
j

TA
j

Lmin
j = 1

Lmax
j = 5dTj = 3

dAj = 6

dAj = 6

Figure 3: Data analysis assigned to two operators.

The binary decision variable for assigning operators to
analysis activities is oAt,h,j , such that oAt,h,j = 1 if human
operator h ∈ H is assigned to analyze data during time interval
t ∈ TA

j from a vehicle’s performance of task j ∈ MA. The
constraints governing operator analysis activities are given by:∑
v∈V

∑
i∈∆−v,j

EA
j xt,v,i,j ≤

∑
h∈H

∑
t′∈TA

j

t+Lmin
j ≤t′≤t+Lmax

j

eAh,j o
A
t′,h,j + zAt,j

∀ j ∈MA, t ∈ Tj , (21)

oAt,h,j ≤
∑
v∈V

∑
i∈∆−v,j

∑
t′∈Tj

t−Lmax
j ≤t′≤t−Lmin

j

xt′,v,i,j

∀ h ∈ H, j ∈MA, t ∈ TA
j , (22)
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∑
t∈TA

j

oAt,h,j ≤
∑
v∈V

∑
i∈∆−v,j

∑
t∈Tj

xt,v,i,j∀ h ∈ H, j ∈MA (23)

oAt,h,j ∈ {0, 1} ∀ h ∈ H, j ∈MA, t ∈ TA
j , (24)

zAt,j ≥ 0 ∀ j ∈MA, t ∈ Tj . (25)

Constraint (21) ensures a sufficient total effectiveness level of
operators assigned to perform analysis of task j no earlier than
Lmin
j , and no later than Lmax

j , time intervals after the time that
v starts performing task j. The parameter eAh,j represents the
effectiveness level of operator h while performing analysis of
task j, and EA

j represents the total required effectiveness of
operators assigned to analyze task j. The IO, represented by
zAt,j , is again included for mathematical feasibility. Constraint
(22) prevents analysis activities from being performed too
early or too late. Constraint (23) prevents h from excessively
re-performing the same analysis activity. Constraints (24) and
(25) describe the nature of the decision variables for analysis
activities.

D. Human Workload during Multi-tasking

The mathematical representations of operators’ multi-task
workloads and workload capacity limit constraints in this
study are predicated upon existing mental workload theories
and methods, specifically: the resource theories, the visual,
auditory, cognitive and psychomotor (VACP) method, and the
“cost of concurrence” concept.

The resource theories [51]–[54] propose that the human has
a limited capacity (resources) for processing information and
this capacity can be allocated in graded amounts to different
activities. Also, these theories view performance decrement as
a shortage of resources. Thus, if an operator simultaneously
performs multiple tasks and their combined demands exceed
the operator’s capacity, the performance of some or all of the
tasks may suffer. The resource theories have been supported
by numerous empirical studies and have served as a basis for
developing human mental workload prediction tools [35].

The VACP method [55], [56] provides a computational
framework for aggregating individual workloads of multiple
simultaneous activities to represent the combined workload.
The method assumes that individual workloads of multiple
simultaneous activities at a time instant can be linearly added
together to represent the instantaneous combined workload.
Each activity’s workload is assumed to be pre-estimated based
on subject matter experts’ subjective ratings. The combined
workload is compared with a predetermined workload thresh-
old to determine if the operator is overloaded. The improve-
ment performance research integration tool (IMPRINT) devel-
oped by Army Research Laboratory uses the VACP method in
predicting operators’ workload-time profiles based on discrete
event simulations [35].

In addition to the linear sum of individual workloads of
simultaneously performed activities, our representation of the
total mental workload also considers the “cost of concurrence”
component [53], which represents the additional workload
purely due to having to manage or supervise multiple activi-
ties. The act of time-sharing itself pulls resources away from
the simultaneous activities above and beyond the resources that

each activity demands by itself [53]. The cost of concurrence is
also consistent with the “switching cost” concept in cognitive
psychology [57], [58]. In most circumstances, switching activ-
ities is known to result in a sizable decrement in performance
[59].

Operators’ multitask workloads and workload capacity lim-
its are mathematically expressed in Constraint (26) below,
which ensures that each operator is not assigned a workload
that exceeds the threshold at any time. Each human operator
is assumed to possess a maximum workload threshold, rep-
resented by Wmax

h ; this corresponds to the mental capacity
concept of the resources theories. At a time instant, each
activity that an operator performs induces some measure of
workload, where wC

hj represents the amount of workload
experienced by operator h when performing a control activity
for task j ∈ MC . Similarly, wP

h,v,i,j represents the workload
on h when performing path-control of vehicle v along arc (i, j)
(such that 〈v, i, j〉 ∈ Γ), and wA

h,j represents the workload on
h when performing analysis of task j ∈ MA. Each of these
workload measures is assumed to be pre-determined by subject
matter experts in a manner similar to the workload estimations
in the VACP method [55], [56]. Also, it is assumed that when
an operator performs multiple activities, the corresponding in-
dividual workload measures can be linearly added to represent
the combined effect, again similar to the computation in the
VACP method.

∑
j∈MC

∑
t′∈TC

j

t−dT
j +1≤t′≤t

wC
h,jo

C
t′,h,j

+
∑

〈v,i,j〉∈Γ

∑
t′∈TP

v,i,j

t−(fv,i,j−dT
i )+1≤t′≤t

wP
h,v,i,jo

P
t′,h,v,i,j

+
∑

j∈MA

∑
t′∈TA

j

t−dA
j +1≤t′≤t

wA
h,jo

A
t′,h,j

+

nmax
h −1∑
n=1

Rn
(
qnt,h − qn+1

t,h

)
+Rnmax

h q
nmax
h

t,h ≤Wmax
h

∀ h ∈ H, t ∈ T (26)

The cost of concurrence is expressed using the scaling pa-
rameter Rn; it represents the additional workload due to
“supervising” or “switching” activities when an operator per-
forms n activities simultaneously (Constraint (26)). The cost
of concurrence may increase in a linear or nonlinear manner
as operators are burdened with more tasks. Empirical testing
is required to determine the exact functional form for the ad-
ditional workload, but three representative forms are depicted
in Figure 4.

Constraint (26) makes use of binary decision variable qnt,h,
which equals one if human h ∈ H performs at least n activities
at time t ∈ T . Appropriate values for qnt,h are determined by



8

# of Activities
1 2 3 4 5

R1

R2

R3

R4

R5

A
d
d
itio

n
a
l
W
o
rk
lo
a
d

(a)

# of Activities
1 2 3 4 5

R1

R2

R3

R4

R5

A
d
d
itio

n
a
l
W
o
rk
lo
a
d

(b)

# of Activities
1 2 3 4 5

R1, R2

R3

R4

R5

A
d
d
itio

n
a
l
W
o
rk
lo
a
d

(c)

Figure 4: Some possible forms of additional workload.

the following constraints:

nmax
h∑

n=1

qnt,h =
∑

j∈MC

∑
t′∈TC

j

t−dT
j +1≤t′≤t

oCt′,h,j +
∑

j∈MA

∑
t′∈TA

j

t−dA
j +1≤t′≤t

oAt′,h,j

+
∑

〈v,i,j〉∈Γ

∑
t′∈TP

v,i,j

t−(fv,i,j−dT
i )+1≤t′≤t

oPt′,h,v,i,j

∀ h ∈ H, t ∈ T, (27)

qnt,h ≤ qn−1
t,h ∀ h ∈ H, t ∈ T, n ∈ {2, 3, . . . , nmax

h }, (28)

qnt,h ∈ {0, 1} ∀ h ∈ H, t ∈ T, n ∈ {1, 2, . . . , nmax
h }, (29)

where parameter nmax
h represents the maximum possible num-

ber of activities that may be performed at a given time by
operator h, and is calculated as follows:

nmax
h =

 Wmax
h

min
{

minj∈M{wC
h,j ∪ wA

h,j} ∪min〈v,i,j〉∈Γ{wP
h,v,i,j}

}


∀ h ∈ H.

Note that nmax
h serves solely to establish the solution space

for qnt,h. Constraint (27) states that the sum of the binary
qnt,h decision variable values equals the number of activities
assigned to operator h at time t. Constraint (28) ensures that
the qnt,h values are sequential over n. In other words, if operator
h is assigned to exactly two tasks at a particular time, t, then
q1
t,h = q2

t,h = 1 and qnt,h = 0 for all n > 2. Finally, Constraint
(29) describes the nature of these decision variables.

While excessive workloads can result in decreased operator
performance, it has also been observed that operators perform
best with some degree of stimulation [35], [60]–[62]. In fact,
[35] stated that “. . . decrements in performance may occur
if workload is either too low or too high.” Therefore, we
incorporate the notion of a target workload level. Deviation
from this target level will result in a penalty in the objective
function, to be described shortly.

To capture the absolute deviation from the target workload
level, represented as τh for each operator h, two new decision
variables are required. Let r+

t,h (r−t,h) represent the amount by
which the actual workload level experienced by operator h at
time t exceeds (falls below) the target level, as illustrated in
Figure 5.

time

w
o
rk
lo
a
d

Threshold, Wmax
h

Target, τh

r+t,h

r−t,h

Figure 5: Deviations from the target workload.

Constraints to establish proper values for r+
t,h and r−t,h are

as follows:

r+
t,h ≥

∑
j∈MC

∑
t′∈TC

j

t−dT
j +1≤t′≤t

wC
h,jo

C
t′,h,j

+
∑

〈v,i,j〉∈Γ

∑
t′∈TP

v,i,j

t−(fv,i,j−dT
i )+1≤t′≤t

wP
h,v,i,jo

P
t′,h,v,i,j

+
∑

j∈MA

∑
t′∈TA

j

t−dA
j +1≤t′≤t

wA
h,jo

A
t′,h,j

+

nmax
h −1∑
n=1

Rn
(
qnt,h − qn+1

t,h

)
+Rnmax

h q
nmax
h

t,h − τh

∀ h ∈ H, t ∈ T (30)

r−t,h ≥ τh −
∑

j∈MC

∑
t′∈TC

j

t−dT
j +1≤t′≤t

wC
h,jo

C
t′,h,j



9

−
∑

〈v,i,j〉∈Γ

∑
t′∈TP

v,i,j

t−(fv,i,j−dT
i )+1≤t′≤t

wP
h,v,i,jo

P
t′,h,v,i,j

−
∑

j∈MA

∑
t′∈TA

j

t−dA
j +1≤t′≤t

wA
h,jo

A
t′,h,j

−
nmax
h −1∑
n=1

Rn
(
qnt,h − qn+1

t,h

)
−Rnmax

h q
nmax
h

t,h

∀ h ∈ H, t ∈ T (31)

r+
t,h ≥ 0 ∀ h ∈ H, t ∈ T (32)

r−t,h ≥ 0 ∀ h ∈ H, t ∈ T (33)

E. Objectives

In such a complex problem, a variety of objectives are
conceivable. We describe several applicable objectives and
demonstrate how these may be considered simultaneously. The
first objective involves maximizing the overall task effective-
ness by assigning higher priority tasks to the most effective
UAVs as early within the allowable time window as possible.
An overall task effectiveness value, ZTE , may be calculated
as follows:

ZTE ≡∑
j∈M

∑
v∈V

∑
i∈∆−v,j

∑
t∈Tj

pjev,j

(
1−

(
t−min{Tj}
|Tj |+ 1

))
xt,v,i,j .

Similarly, it is desirable to assign the most effective oper-
ators to the highest priority tasks. An operator effectiveness
value, ZOE , may be determined as follows for each of the
three types of operator activities:

ZOE ≡
∑
h∈H

∑
j∈MA

∑
t∈TA

j

pje
A
h,jo

A
t,h,j

+
∑
h∈H

∑
j∈MC

∑
t∈TC

j

pje
C
h,jo

C
t,h,j

+
∑
h∈H

∑
〈v,i,j〉∈Γ

∑
t∈TP

v,i,j

max{pi, pj}ePh,v,i,joPt,h,v,i,j .

To encourage operator assignments near target workload
levels, we define

ZW ≡
∑
h∈H

∑
t∈T

(
φr+

t,h + θr−t,h

)
to be the weighted sum of deviations from the target, where
φ ≥ 0 represents a penalty for exceeding the operator’s
target workload level at any time, and θ ≥ 0 represents a
similar penalty imposed when the operator’s workload level
falls below the target value.

Finally, we wish to minimize the use of infinite resources
and operators, particularly for high-priority tasks. This penalty
is given by

ZIR ≡
∑
j∈M

pjzj +
∑

j∈MC

∑
t∈Tj

pjz
C
t,j

+
∑

〈v,i,j〉∈Γ

∑
t∈TP

v,i,j

max{pi, pj}zPt,v,i,j +
∑

j∈MA

∑
t∈Tj

pjz
A
t,j .

We incorporate these individual objectives as follows:

Z =
ZTE

Zmax
TE

+
ZOE

Zmax
OE

− ZW

Zmax
W

− ZIR (34)

where the first three terms are scaled by their maximum values
such that

Zmax
TE ≡

∑
j∈M

max
v∈V
{pjev,jumax

j },

Zmax
OE ≡

∑
j∈MA

max
h∈H

{
pje

A
h,jn

max
h

}
+
∑

j∈MC

max
h∈H

{
pje

C
h,jn

max
h

}
+

∑
〈v,i,j〉∈Γ

max
h∈H

{
max{pi, pj}ePh,v,i,jnmax

h

}
, and

Zmax
W ≡

∑
h∈H

∑
t∈T
{max(Wmax

h − τh, τh)} .

The complete mathematical programming formulation for
the operator assignment model is given by:

Max (34) Mission Effectiveness
s.t. (1) – (11) UAV Assignments

(12) – (15) Operator control of UAVs on task
(16) – (20) Operator control of UAVs along paths
(21) – (25) Operator analysis activities
(26) – (33) Operator workload constraints

VI. NUMERICAL EXAMPLE

A small-scale example is presented to show the impact of
incorporating human factors considerations in the routing of
UAVs. Although the proposed mathematical model accom-
modates multiple operators, heterogeneous UAVs, and three
types of operator activities, for ease of explanation and greater
clarity this example features only a subset of the model’s
features. Five surveillance tasks, each with a duration of
dTj = 4, must be performed by two identical UAVs, such that
the effectiveness of vehicle v performing task j is given by
ev,j = 1. The allowable time windows and priority values of
each task are given in Table I, where it is shown that tasks 1,
3, and 5 are of higher priority.

Table I: Task parameters

Task Time Window Priority
j

[
Tmin
j , Tmax

j

]
pj

1 [ 1, 7] 3
2 [ 1, 14] 1
3 [ 1, 13] 3
4 [ 8, 19] 1
5 [16, 30] 3

Each UAV task requires two operator activities: control of
the UAV over the target and analysis of the surveillance data.
Each analysis activity must be performed within four time
units of the completion of the UAV task (i.e., Lmin

j = 0 and
Lmax
j = 4). A single operator is available, whose effectiveness
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values for all control and analysis activities are given by eCh,j =

eAh,j = 1. The total required operator effectiveness for these
activities are given by EC

j = EA
j = 1. Each control activity is

assumed to impose a workload of wC
h,j = 0.5, whereas each

analysis activity has a workload of wA
h,j = 1.0, indicating

the relative difficulty of two activities. Additional workload
values associated with the performance of multiple activities
simultaneously are given by R1 = 0.25, R2 = 0.5, R3 = 1,
R4 = 2, and R5 = 4.

The sensitivity of the model with respect to changes in op-
erator workload thresholds is tested by varying these threshold
levels and obtaining optimal operator and UAV assignments.
Five threshold levels were tested, as shown in Table II.

Table II: Operator threshold and target workload values.

Model

Parameter A B C D E
Wmax

h 20 1 1.5 2 2.5
τh 0 0.5 0.75 1 1.25

Figure 6 contains details of optimal UAV and operator
assignments when the operator workload threshold value is
essentially infinite. To obtain this particular mission plan, the
routing algorithm was first solved without any human factors
considerations (i.e., the only objective was to maximize the
overall effectiveness of the UAVs). Using the resulting UAV
assignments as inputs, the algorithm was re-executed, this time
maximizing the human effectiveness. Given the effectively
non-existant workload threshold, the operator is tasked to
perform 6 activities simultaneously during time intervals 10
– 13.

In Model B (Figure 7), the operator’s workload threshold is
decreased to wmax

h = 1. Due to the workload requirements of
the control and analysis activities, as well as the R1 value, this
threshold allows the operator to perform only control activities.
The resulting mission plan, therefore, does not include any
data analysis although all UAV tasks are assigned. Because the
operator cannot multitask due to the low workload threshold,
the mission duration is extended from that of Model A.

In Model C, the workload threshold is increased to wmax
h =

1.5. Again, the operator is unable to multitask, as shown in
Figure 8. However, this threshold is now large enough to allow
analysis activities. In this case, control and analysis activities
may be performed, but only on three of five tasks. As a
result, only one of the UAVs is employed. Note that, while
this UAV could begin task 3 at time interval 10 (indicated
by an “x” in the UAV Gantt chart), it is delayed until time
13 to accommodate the operator. A similar delay is observed
for task 5. Also of interest is the fact that the UAV skips
from task 1 to task 3, bypassing task 5, because task 3 is
of a higher priority and it is desirable to perform this task
earlier. In Model D (Figure 9), the workload threshold has
been increased to a level that allows all tasks to be performed,
as the operator may simultaneously perform a control activity
and an analysis activity (although it is still infeasible for the
operator to perform two control activities simultaneously).

Finally, in Model E, the operator may now perform two
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Figure 6: Model A – UAV routes ignore human factors
considerations.
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Figure 7: Model B (Wmax
h = 1, τh = 0.5).

control activities simultaneously. As a result, high-priority
tasks 1 and 3 may be performed early (Figure 10). This
increases the overall task effectiveness. While UAV 1 flies past
task 5 en route from 1 to 4, the operator is too busy to perform
task 5 until later. Thus, the model has successfully balanced
operator workload, despite UAV routes that would appear sub-
optimal if human factors considerations were ignored. In this
small example, five different workload thresholds produced
five unique UAV routes, as shown in Figure 11.
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Figure 8: Model C (Wmax
h = 1.5, τh = 0.75).
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Figure 9: Model D (Wmax
h = 2, τh = 1.0).

VII. SUMMARY AND FUTURE RESEARCH DIRECTIONS

Most previous human factors studies related to UAV mission
tasks made efforts to address the human operator workload
and performance issues at the single operator level. Many
existing UAV routing studies describe optimization approaches
for tasking a fleet of aircraft to time-sensitive targets. However,
few studies have explored the possibilities of coordinating
multiple human and machine assets at the global system level
to optimize the complex system’s overall performance while
simultaneously meeting human operators’ workload require-
ments. This article presented a task scheduling model based on
mathematical programming for such system level integration
and optimization. It is thought to be the first of its kind.

Specifically, an integer programming formulation for the
problem of scheduling a fleet of heterogeneous UAVs to
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Figure 10: Model E (Wmax
h = 2.5, τh = 1.25).

time-sensitive targets is proposed. This model recognizes that
UAVs, while unmanned, require significant human supervi-
sion. As such, optimal mission effectiveness can be realized
only when man and machine are scheduled in harmony. Three
hybrid operator activities have been modeled, including control
of UAVs on targets, control of UAVs between targets, and
analysis of data captured during surveillance of a target.
Assignments of operators to activities must not exceed human
workload limitations.

Admittedly, one limitation of the proposed model is that
it employs a uni-dimensional representation of workload and
resources, rather than a multi-dimensional (visual, auditory,
cognitive and psychomotor) representation, as found in [35],
[36], [55], [56]. This uni-dimensional approach was employed
for the sake of mathematical tractability, as the aforementioned
models did not incorporate the UAV routing optimization
(which is itself a challenging problem). Nonetheless, efforts
to extend the proposed model to allow for multi-dimensional
representations are ongoing.

We believe that the proposed mathematical model will be
best utilized when supported by a user interface to display the
complex mission plans generated as model outputs. We are
currently investigating user interfaces that would effectively
serve this purpose. One promising candidate is proposed
by [63], which facilitates operator collaboration for teams
of UAVs. Myriad additional opportunities exist for future
research efforts that incorporate operator considerations within
the context of UAV routing. Particularly relevant to the
proposed mathematical model would be empirical studies to
determine appropriate numerical values for operator workload
thresholds and activity effectiveness. Solution approaches for
large-scale problems would also be of value. Extensions to the
proposed model, such as additional operator activities, may



12

6

1

[1,7]

2

[1,14]

3

[1,13]

4

[8,19]

5

[10,30]

(a) Model A

6

1

[1,7]

2

[1,14]

3

[1,13]

4

[8,19]

5

[10,30]

(b) Model B

6

1

[1,7]

2

[1,14]

3

[1,13]

4

[8,19]

5

[10,30]

(c) Model C

6

1

[1,7]

2

[1,14]

3

[1,13]

4

[8,19]

5

[10,30]

(d) Model D

6

1

[1,7]

2

[1,14]

3

[1,13]

4

[8,19]

5

[10,30]

(e) Model E

Figure 11: Optimal UAV routes for each model.

also be beneficial for certain mission scenarios. Finally, the
model could be enhanced to consider the stochastic nature of
targets and operator performance.
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