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A Branch-and-Bound-Based Solution Approach for Dynamic
Rerouting of Airborne Platforms

Abstract: This paper is a sequel to a recent paper that appeared in this journal, “An extensible modeling
framework for dynamic reassignment and rerouting in cooperative airborne operations” [17], in which an in-
teger programming formulation to the problem of rescheduling in-flight assets due to changes in battlespace
conditions was presented. The purpose of this paper is to present an improved branch-and-bound procedure
to solve the dynamic resource management problem in a timely fashion, as in-flight assets must be quickly
re-tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated
mission plans, this procedure utilizes a technique for reducing the solution space, supports branching on
multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal
network constraints of the original mathematical model, and includes improved objective function bounds.
An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional
branch-and-bound methodologies, and is capable of providing improved feasible solutions in a limited time.
Although inspired by the dynamic resource management problem in particular, this approach promises to
be an effective tool for solving other general types of vehicle routing problems.

Keywords: UAV routing; dynamic retasking; MILP; multiobjective; course of action; DVRPTW; branch-
and-bound

1 Introduction

Unmanned aerial vehicles (UAVs) have become invaluable assets in global military operations. Tech-
nological advances and commander confidence in these systems have led to increasingly complex
missions involving coordination among assets. For example, laser-guided munitions may require
one UAV to ‘paint’ a target with a laser marker while another UAV fires the missile. Other complex
mission components may involve battle damage assessment, surveillance of a target from multiple
vantage points, and geolocation of unknown targets. Outside of the military domain, UAVs promise
to be useful in search-and-rescue operations [24], disaster relief [19], police patrols [2], and security
at major spectator events such as the Olympics [26].

Motivated by the enhanced capabilities of unmanned aircraft systems, as well as the fact that
these aircraft operate in uncertain and rapidly evolving environments, the authors recently proposed
a general modeling framework for dynamic re-routing of airborne assets [17]. Although inspired by
unmanned aerial vehicles (UAVs), this model is applicable to a wide variety of vehicles, including
land-based or submersibles. The aforementioned paper featured an integer linear programming
(ILP) formulation for the problem of determining updated assignments of UAVs to a set of tasks
when a dynamic event triggers the necessity for altering the initial mission plan. Examples of
dynamic events (or ‘pop-ups’) may include the appearance of a new target, the loss of a UAV,
or changes to characteristics of previously-identified tasks. In this problem, a set of priority-
based, time-sensitive tasks are identified at the time of the pop-up event. A fleet of heterogeneous
airborne resources are available; each resource begins its route at its current location and must
terminate its route at a base location prior to exhausting its fuel supply. If a resource has insufficient
fuel, ‘dummy’ bases exist as alternate base (terminal) nodes, which may be used with a penalty.
Each task is classified according to a taxonomy that identifies whether the task is required or
optional, and whether the task requires coordination among multiple resources or other tasks. Such
synchronization may include multiple resources performing the same task simultaneously, multiple
resources performing separate tasks simultaneously, or precedence constraints among tasks. The
model presented in [17] is thought to be among the first formulations to reflect such a large variety
of the complex task types performed by modern UAVs. We are aware of no solution approaches
for similar formulations that are designed to produce attractive feasible solutions quickly.

Due to the time-critical nature of this problem, rapidly-generated implementable (albeit not
necessarily optimal) solutions are required. Although the use cases presented in [17] indicate that



many small-sized problems may be solved to optimality via commercial ILP solvers (e.g., CPLEX),
such off-the-shelf solution approaches are ill-suited for finding quality solutions to larger problems
in a reasonable time. In this paper, an ‘intelligent’ branch-and-bound solution procedure using the
LP relaxation is proposed for solving this dynamic resource reallocation problem. This approach
begins by employing a solution space reduction procedure that limits the number of candidate
arcs in the network by taking into consideration the proximity of tasks to the initial route of each
resource. Empirical analysis indicates that this procedure effectively reduces runtimes, a crucial
feature for time-critical problems of this nature. Once the solution space has been reduced to a
more manageable scale, a route construction procedure is initiated, whereby each resource begins
its route at its current location and each subsequent arc is appended to the route until the resource
is assigned to a base (depot) node.

Two rules are proposed for determining the decision variable, or sum of decision variables, on
which the procedure branches. These rules exploit the underlying route construction procedure.
As such, the determination of decision variables that are set during the branching process is guided
by the last known node in each resource’s route and the earliest feasible time for which the resource
could begin service at the next node. If the bounding process reveals that a partially-constructed
route cannot yield a better objective function value than the incumbent solution (which is initially
provided by the original mission plan), the branching procedure is used to prohibit the resource
from being assigned to the most recently assigned arc. The assignment of the chosen decision
variable during the branching procedure need not be restricted to those decision variables that
have non-zero values in the LP relaxation. In addition to employing an innovative method for
determining branching policies, additional valid cuts are added when arc assignments are made.
These cuts serve to strengthen the network formulation and effectively guide the resource to the
next leg in its route.

Although our problem of interest was inspired by military UAV missions, both the mathematical
model and the proposed solution approach may be applied to a more general class of dynamic
resource re-allocation problems involving coordination among multiple resources (vehicles). For
example, surveillance tasks requiring multiple UAVs to investigate a target could just as easily be
considered as customer service requests requiring multiple repairmen to fix machinery. Similarly,
a “battle damage assessment” task may be used to model precedence relationships requiring one
type of good to be delivered before another good. Likewise, the expendable payload considered in
this paper could describe bombs dropped from capacity-constrained UAVs or packages delivered
by capacity-constrained trucks. It bears noting that, while some of these individual tasks may
be considered by existing solution approaches, the problem of interest involves the combination
of multiple complex task types. To solve this increasingly important problem, a new approach is
required.

The remainder of this paper is organized as follows. In Section 2, a discussion of relevant
solution approaches from the literature is presented. Section 3 describes the mathematical model
and notation. An overview of our proposed solution approach is contained in Section 4, while the
detailed approach is covered in Section 5. A numerical analysis is described in Section 6, including
a comparison of our solution approach against CPLEX. Finally, a summary, discussion of the
proposed approach’s application to general vehicle routing problems, and suggested opportunities
for further algorithmic research are presented in Section 7.



2 Solution Approaches for Related Problems

As discussed in the literature review of [17], there are numerous vehicle routing formulations that
consider a subset of the features incorporated in our model. More recently, [9] has provided a
survey of general vehicle routing problems employing a wide array of synchronization constraints.
However, despite the growing interest in such coordinated vehicle routing problems, models that
address the problem at hand are scarce.

One such model is presented by [14], who employ the LTL−X linear temporal logic language to
translate a wide variety of mission constraints into two mixed integer linear programming (MILP)
formulations; one based on set covering, the other on network flows. Examples involving up to
four UAVs and three targets demonstrate several complex scenarios that may be modeled via this
approach. These models are then solved with commercial ILP software. The LTL−X modeling
approach is extended in [13] to address timing (rather than simply precedence) constraints among
tasks. The resulting VRP with metric temporal logic (VRPMTL) is demonstrated on two highly-
constrained problems involving three UAVs and five targets. The modeling approaches of [14] and
[13] accommodate the description of complex tasks beyond those defined in [17]. However, no
corresponding solution approaches for large-scale problems are provided.

Another similar problem is solved by the “coupled-constraint consensus-based bundle algorithm”
(CCBBA) proposed by [28]. This approach is an extension of other bid-based approaches designed
for decentralized mission planning and considers a variety of coordinated tasks with time windows
as performed by vehicle of varying capabilities. Although the CCBBA approach is quite flexible,
it is not capable of addressing all of our constraints in its present form. For example, it does not
consider expendable payload or required tasks (a reward is earned when performing a task, but no
penalties are assessed for failing to perform certain tasks). Also, some of the tasks described in our
model would require a of nesting of CCBBA “activities,” which is not allowed by that approach.
Nonetheless, CCBBA is an intriguing approach that, if properly modified, may offer an effective
means of solving our problem of interest.

Although we are aware of no documented solution approaches that have been tailored to solve
realistically-sized instances of the problem at hand, it is worth noting the types of solution ap-
proaches that have been proposed for models that share some similarities with our work. In
particular, we focus on UAV-related models because they are in our domain, and they (typically)
recognize the importance of quick-running solution approaches due to the nature of this problem.

An exact solution approach to the problem of routing UAVs to targets with precedence con-
straints has been proposed by [5]. Their column generation procedure, which may be solved in a
distributed manner, was demonstrated on a precedence-constrained problem involving four hetero-
geneous UAVs and six tasks. Other exact solution methodologies have been relegated to employing
third-party mixed integer linear programming (MILP) solvers. Computational experiments for
these methods involved a small number of targets. For example, the largest problem size con-
sidered by Weinstein and Schumacher [27] is 8 targets and 4 resources, and the largest size for
Schumacher et al. [18] is 3 targets (where each target has 3 tasks) and 5 resources. Wilde et al. [29]
do not provide any numerical analysis, but report that their approach has been applied to several
scenarios involving 2 to 6 resources.

A heuristic solution approach is provided by Janez [12], who uses a modification of the well-
known Clarke and Wright [6] savings algorithm. Bellingham et al. [1] first estimate completion
times for each task from an enumerated list of all task combinations. An MILP is subsequently
solved to determine which assignment to use for each resource. Finally, actual flight routes, subject
to kinematic constraints regarding flight dynamics and collision avoidance, are determined. The
largest test case considered is for 12 waypoints and 6 resources, with no discussion on solution



times. More recently, [11] have proposed a tabu search heuristic with 2-opt exchange for a problem
with precedence constraints. A simulation study involving two vehicles and 30 tasks was conducted,
such that all tasks are performed instantaneously and vehicles are not bound by fuel restrictions.
A survey of the dynamic vehicle routing (DVR) problem, in which new tasks are revealed over
time, is provided by [4]. An “algorithmic queueing theory” approach is used to establish policies
that guide future route determinations. Tasks are partitioned into clusters, such that tasks in a
particular cluster are assigned to the same vehicle.

As with research on the vehicle routing problem with time windows (VRPTW), most recent
solution approaches for UAV routing problems have focused on metaheuristics. A genetic algorithm
is proposed by Shima et al. [21]. However, it is difficult to judge the applicability of their approach
to our model, as their problem does not consider task priorities, time windows, payload delivery, or
task coordination. Their algorithm was tested on 3 to 10 targets, where each target has exactly 3
tasks. A hybrid genetic approach is proposed by Berger et al. [3], who allow 15-minutes of runtime
for their test cases. Shetty et al. [20] apply tabu search to test problems with up to 15 targets and 4
resources. Another tabu search heuristic is given by Kinney et al. [15], where the best move over all
possible neighboring solutions is selected. They tested their heuristic on Solomon’s VRP benchmark
problems [22], which do not include time windows, heterogeneous resources, multiple depots, or
task priorities, and require exactly one resource to perform each task. Additional testing on 10
multiple-depot VRP test problems was also conducted. The conclusion was that their heuristic was
not able to produce solutions comparable to the best results reported for these benchmark problems,
but attractive performance was found with significantly shorter runtimes. For problems involving
multiple objectives, Tavana et al. [25] propose a method for evaluating candidate solutions. This
approach may be included within a variety of metaheurstics, such as genetic algorithms, simulated
annealing, and tabu search. Cordeau et al. [7] caution that, while metaheuristics have been used to
find high-quality solutions for VRPTW problems, it is difficult to find feasible neighboring solutions
when extensions such as multiple depots or heterogeneous vehicles are included.

3 Mathematical Model and Notation

This section is devoted to the mathematical formulation, details of which may be found in [17].
A summary of model notation regarding sets, parameters, and decision variables may be found in
Tables 1, 2, and 3, respectively. The reader may note that, for ease of understanding, we have
presented a slightly modified version of our original model.

The setM represents all known tasks, such that each task j ∈M is classified as being exactly one
of five unique non-preemptive task types: RNA, ONA, RNS, RNM(s), or RNP . The taxonomy
defining these task type acronyms is described in detail in [17]. The first letter indicates whether
the task is required (i.e., failure to perform this task results in an objective function penalty) or
optional. The second letter indicates that these tasks are non-preemptive, such that these tasks may
only be interrupted in the event of a pop-up. The third letter describes the unique characteristic
of a task type. For example, an RNA task may be performed at any time within its allowable
time window (to be described below). Each task j ∈ RNA requires the assignment of at least nmin

j ,
and no more than nmax

j resources. ONA tasks are the “optional” counterparts to RNA tasks,
such that there is no penalty associated with failing to perform an ONA task. The RNS task
type describes an individual required, non-preemptive task that must be performed by multiple
resources simultaneously (although each distinct RNS task may be performed at a different time).
The RNS task type may be useful for a target requiring direct overhead surveillance by multiple
resources at the same time.



Table 1: Notation – Sets

B Set of bases (depots).
M Set of nonpreemptive tasks (mission components).
R Set of resources.
Br Set of bases (depots) that are available to resource r ∈ R. Br ⊆ B.
B′

r If ∆0
r does not represent a base location, then B′

r = ∅. Otherwise, B′

r equals the actual base number
associated with the initial location of resource r ∈ R.

Mr Set of tasks capable of being performed by resource r ∈ R. Mr ⊆ M .
Rj Set of resources that can perform task j ∈ M . Rj ⊆ R.
P Set of tasks requiring payload delivery.
T Set of time intervals comprising the mission horizon.
Tj Set of time intervals in which service at node j ∈ {M ∪B ∪∆∗} may begin. Tj ⊆ T .
∆0

r Initial location of resource r ∈ R. This is a single location, not a set. ∆0
r /∈ {M ∪ B ∪∆∗

r}. Resources
cannot travel to ∆0

r (∆0
r /∈ ∆+

r ).
∆∗

r Sink node used by resource r if it does not have sufficient fuel capacity to travel to a base b ∈ Br prior
to running out of fuel. ∆∗

r /∈ {M ∪B ∪∆0
r}.

∆+
r Set of all possible nodes to which resource r ∈ R may travel. ∆+

r ⊆ {Mr ∪Br ∪∆∗

r}.
∆−

r,j Set of all possible nodes from which resource r ∈ R may travel directly to node j ∈ ∆+
r . ∆−

r,j ⊆

{∆0
r ∪M}. j /∈ ∆−

r,j .
RNA Required, non-preemptive tasks that may be performed in any allowable time interval.
ONA Optional, non-preemptive tasks that may be performed in any allowable time interval.
RNS Required, non-preemptive tasks that must be performed by multiple resources simultaneously.

RNM(s) Set of required, non-preemptive tasks in which multiple tasks must be performed simultaneously, where
s ∈ S is an index identifying a collection of related tasks.

RNP Required, non-preemptive tasks with precedence requirements.
RNP ′(j) Set of tasks that are predecessors of task j ∈ RNP .

Table 2: Notation – Parameters

t0 Time interval in which pop-up event occurs. t0 ≡ min(T ).
pj Priority value of task j ∈ M . pj > 0.
er,j Effectiveness value for resource r ∈ R performing task j ∈ M .
dj Duration, in number of time intervals, for performing task j ∈ M .

fr,i,j Minimum number of time intervals required for resource r ∈ R to travel to node j ∈ ∆+
r from node

i ∈ ∆−

r,j .
g′r Remaining fuel capacity of resource r at time t0. Measured in number of time intervals.

nmin
j (nmax

j ) Minimum (maximum) number of resources that may perform task j ∈ M .
kmin
j (kmax

j ) Minimum (maximum) units of payload that may be delivered to task j ∈ P .
c′r Remaining payload capacity of resource r at time t0.
α Objective function scaling parameter used to capture the relative importance of maximizing overall

mission effectiveness (α = 1) or minimizing changes to the initial mission plan (α = 0). 0 ≤ α ≤ 1.
β Objective function scaling parameter to capture the importance of minimizing total travel distance.

β ≥ 0.
ar,i,j Binary parameter. If resource r were initially assigned to travel directly from node i to node j then

ar,i,j = 1. Let ar,•,j = 1 if resource r were initially assigned to node j (regardless of the node preceding
j).

lagj Number of time intervals that must pass between the time that the last task in RNP ′(j) is performed
and the beginning of service of task j ∈ RNP .



Table 3: Notation – Decision Variables

xt
r,i,j Binary decision variable. xt

r,i,j = 1 if resource r ∈ R is to be assigned to node j ∈ ∆+
r during time

interval t ∈ Tj and the previous node was i ∈ ∆−

r,j .
xRNP
t,j Binary decision variable used to indicate if task j ∈ RNP is performed during time interval t ∈ Tj .

xRNP′

j Binary decision variable used to indicate if at least one task in RNP ′(j) is performed, for all j ∈ RNP .
yj Infinite resource. yj ∈ {0, 1, . . . , nmin

j } for all j ∈ {RNA ∪ RNP}.
ztj Infinite resource. ztj ∈ {0, 1, . . . , nmin

j } for all j ∈ {RNS ∪RNM(s)}, t ∈ Tj .
wj Infinite payload. wj ∈ {0, 1, . . . , kmin

j } for all j ∈ P .
qr,j Integer decision variable used in payload delivery constraints. Represents the units of payload delivered

by resource r to task (target) j ∈ P . qr,j ∈ {0, 1, . . . ,min(c′r, k
max
j )}.

ht
j Binary decision variable used by RNS tasks, such that ht

j = 1 if task j is performed in time interval
t ∈ Tj .

bts Binary decision variable used by RNM tasks to ensure that all tasks in the sth set, RNM(s), are
performed in the same time interval, t.

RNM(s) tasks represent an extension of RNS tasks, whereby multiple tasks must be per-
formed simultaneously. Here, s ∈ S is an index allowing the definition of multiple sets of RNM(s)
tasks. Thus, for each s there exists a set of multiple tasks that must be performed simultaneously.
RNM(s) tasks may be useful for coordinating laser-guided munitions, where one resource may use
a laser from close range to designate a target while another resource may fire the weapon from a
different location. Finally, RNP tasks incorporate precedence constraints, such that task j ∈ RNP
must be performed after task k ∈ RNP ′(j) is completed, where RNP ′(j) represents the set of all
predecessors of task j. The parameter lagj indicates the minimum number of time intervals that
must pass between the completion of predecessor task k and the start of task j.

Associated with each task j ∈M is a time window, Tj , that represents the set of discrete time
intervals in which the task may be performed. Each task j requires a known performance duration,
such that dj = 0 indicates an instantaneous task (e.g., taking a snapshot) and dj > 0 indicates
a task requiring multiple time slices to complete (e.g., video surveillance). The relative priority
of task j is given by pj, where larger values of pj represent higher-priority tasks. To reflect the
fact that the configuration of resource r will affect that resource’s ability to perform task j, the
parameter er,j denotes the relative effectiveness of r while performing task j. Some tasks may
require the delivery of expendable payload carried by one or more resources, such as laser-guided
missiles.

The key binary decision variable xtr,i,j serves to describe each leg in the route of each resource,

where xtr,i,j = 1 if resource r ∈ R begins service at node j at time t ∈ Tj, after having previously
visited node i. The concepts of ‘infinite’ resources (IR), ’infinite’ payload (IP), and ’dummy’ bases
(DB) were proposed to ensure that a mathematically feasible solution can always be found. These
are analogous to artificial variables with a high cost, allowing for feasible/partial and implementable
solutions.

Due to the complexity of the model presented in [17], some simplifying assumptions are utilized
in this paper. First, the solution procedure proposed here focuses solely on the five non-preemptive
task types (RNA, ONA, RNS, RNM(s), and RNP ). Although the four additional preemptive
task types in [17] are attractive due to their flexibility, they require significantly more decision
variables. Fortunately, any solution in which a preemptive task is not preempted is still a valid
solution. Therefore, although the flexibility of these tasks is lost, they may be included in the
proposed solution approach if they are treated as non-preemptive tasks. Second, this solution
approach relies on assigning resources to tasks at the earliest feasible time. As such, this approach



does not account for time preferences within each task’s allowable time window. Furthermore, the
objective of minimizing changes to the time in which a given task is performed is not incorporated
in the branching rules.

3.1 Objective Function

The objectives of the dynamic resource reallocation problem are to maximize the overall effective-
ness of the mission, minimize changes to the initial mission plan, minimize total travel time, and
minimize the use of IR, IP, and ’dummy’ bases. Overall mission effectiveness is quantified by the
task priorities and the relative effectiveness of the resources assigned to those tasks. The objective
of minimizing mission changes is considered to prevent an inconsequential improvement in mis-
sion effectiveness at the expense of wholesale changes in task assignments. As will be discussed in
Section 5, greater emphasis on minimizing changes can lead to improved algorithm performance.

The objectives are combined in a linear manner as

Max α
ZE

Zmax
E

− (1− α)

(

ZCO

Zmax
CO

+
ZCR

Zmax
CR

)

− β
ZT

Zmax
T

− (ZIR + ZDB + ZIP ) , (1)

where 0 ≤ α ≤ 1 captures the tradeoff between maximizing effectiveness and minimizing changes,
while 0 ≤ β ≤ 1 reflects the weight assigned to minimizing travel time. The Z• terms represent
corresponding objectives, such that ZE describes the effectiveness of assignments; ZCO and ZCR

represent changes to the order in which resources perform tasks and the resources that are assigned
to each task, respectively; ZT represents the total travel time; and ZIR, ZIP and ZDB represent
the use of IR, IP, and ‘dummy’ bases. Expressions for these terms are provided below:

ZE ≡
∑

j∈M

∑

r∈Rj

∑

t∈Tj

∑

i∈∆−

r,j

pjer,j

(

1−

(

t−min{Tj}

|Tj |+ 1

))

xtr,i,j +
∑

j∈P

∑

r∈Rj

pjqr,j,

ZE ≤ Zmax
E ≡

∑

j∈M

(

pj max
r∈Rj

(er,j)n
max
j + pjk

max
j

)

,

ZCO ≡
∑

r∈R

∑

j∈∆+
r

∑

i∈∆−

r,j

i ̸=j

∑

t∈Tj

(1− ar,i,j) x
t
r,i,j ≤ Zmax

CO ≡
∑

j∈M

nmax
j + |R|,

Znon
CR ≡

∑

j∈Mnon

∑

r∈Rj

ar,•,j

⎛

⎜

⎝
1−

∑

i∈∆−

r,j

∑

t∈Tj

xtr,i,j

⎞

⎟

⎠
,

Zbase
CR ≡

∑

r∈R

∑

j∈Br

ar,•,j

⎛

⎜

⎝
1−

∑

i∈∆−

r,j

∑

t∈Tj

xtr,i,j

⎞

⎟

⎠
,

ZCR ≡ Znon
CR + Zbase

CR ≤ Zmax
CR ≡

∑

j∈M

nmax
j + |R|,

ZT ≡
∑

r∈R

∑

j∈∆+
r

∑

i∈∆−

r,j

∑

t∈Tj

fr,i,jx
t
r,i,j ≤ Zmax

T ≡
∑

r∈R

g′r,

ZIR ≡
∑

j∈(RNA∪RNP )

pjyj +
∑

j∈(RNS∪RNM(s))

∑

t∈Tj

pjz
t
j ,



ZDB ≡
∑

r∈R

∑

i∈∆−

r,∆∗
r

xt0+g′r+1
r,i,∆∗

r
,

ZIP ≡
∑

j∈P

pjwj .

3.2 Task Constraints

The following constraints ensure that each task is properly assigned, according to its type. First,
each RNA task must be performed by the appropriate number of resources at any time within
an allowable time window. Additionally, a given resource may perform a particular RNA task no
more than once.

nmin
j ≤

∑

r∈Rj

∑

t∈Tj

∑

i∈∆−

r,j

xtr,i,j + yj ≤ nmax
j ∀ j ∈ RNA, (2)

∑

t∈Tj

∑

i∈∆−

r,j

xtr,i,j ≤ 1 ∀ j ∈ {RNA : nmax
j ≥ 2}, r ∈ Rj. (3)

Each optional task j ∈ ONA may be performed by at most nmax
j resources. As with RNA tasks,

an ONA task may not be performed more than once by the same resource.

∑

r∈Rj

∑

t∈Tj

∑

i∈∆−

r,j

xtr,i,j ≤ nmax
j ∀ j ∈ ONA, (4)

∑

t∈Tj

∑

i∈∆−

r,j

xtr,i,j ≤ 1 ∀ j ∈ {ONA : nmax
j ≥ 2}, r ∈ Rj. (5)

A particular task j ∈ RNS must be performed by an acceptable number of resources simultaneously :

htjn
min
j ≤

∑

r∈Rj

∑

i∈∆−

r,j

xtr,i,j + ztj ≤ htjn
max
j ∀ j ∈ RNS, t ∈ Tj , (6)

∑

t∈Tj

htj = 1 ∀ j ∈ RNS. (7)

Similarly, the multiple unique tasks within set RNM(s), for a particular index s ∈ S, must be
performed at the same time:

btsn
min
j ≤

∑

r∈Rj

∑

i∈∆−

r,j

xtr,i,j + ztj ≤ btsn
max
j ∀ s ∈ S, j ∈ RNM(s), t ∈

⋂

k∈RNM(s)

Tk, (8)

∑

t∈
⋂

k∈RNM(s) Tk

bts = 1 ∀ s ∈ S. (9)

Finally, each task j ∈ RNP must be performed if at least one task k ∈ RNP ′(j) is previously per-
formed. In Constraint (10) below, xRNP′

j = 1 if a predecessor task k is performed. Constraint (11)
ensures that the appropriate number of resources are assigned to task j, provided that predecessor
task k is performed. As with the other task types, an RNP task cannot be performed multiple
times by the same resource, as in Constraint (12). Constraint (13) determines the start time of
task j, as indicated by xtextRNP

t,j . Constraint (14) prohibits RNP task j from starting before lagj



time intervals have elapsed since the completion of predecessor task k.

xRNP′

j ≤
∑

k∈RNP ′(j)

∑

r∈Rk

∑

i∈∆−

r,k

∑

t∈Tk

xtr,i,k ≤

⎛

⎝

∑

k∈RNP ′(j)

nmax
k

⎞

⎠xRNP′

j ∀ j ∈ RNP, (10)

nmin
j xRNP′

j ≤
∑

r∈Rj

∑

i∈∆−

r,j

∑

t∈Tj

xtr,i,j + yj ≤ nmax
j xRNP′

j ∀ j ∈ RNP, (11)

∑

t∈Tj

∑

i∈∆−

r,j

xtr,i,j ≤ 1 ∀ j ∈ {RNP : nmax
j ≥ 2}, r ∈ Rj, (12)

xRNP
t,j ≤

∑

r∈Rj

∑

i∈∆−

r,j

xtr,i,j ≤ nmax
j xRNP

t,j ∀ j ∈ RNP, t ∈ Tj , (13)

(

1− xRNP
t,j

)

≥
1

nmax
k

∑

r∈Rk

∑

i∈∆−

r,k

∑

tk∈Tk :
tk>t−lagj−dk

xtkr,i,k ∀ j ∈ RNP, k ∈ RNP ′(j), t ∈ Tj. (14)

3.3 Payload Delivery Constraints

Constraints governing the allocation of expendable payload are as follows:

∑

j∈{P∩Mr}

qr,j ≤ c′r ∀ r ∈ R, (15)

qr,j ≤ min(c′r, k
max
j )

∑

i∈∆−

r,j

∑

t∈Tj

xtr,i,j ∀ j ∈ P, r ∈ Rj , (16)

kmin
j ≤

∑

r∈Rj

qr,j + wj ≤ kmax
j ∀ j ∈ P, (17)

3.4 Network Constraints

The following constraints ensure that each resource is assigned to a feasible route.

∑

j∈{∆+
r :t∈Tj}

∑

i∈∆−

r,j

xtr,i,j ≤ 1 ∀ r ∈ R, t ∈ T, (18)

∑

j∈{∆+
r :∆0

r∈∆
−

r,j}

∑

t∈Tj

xtr,∆0
r,j

= 1 ∀ r ∈ R, (19)

∑

t∈{Tj :t<t0+f
r,∆0

r,j
}

xtr,∆0,j = 0 ∀ r ∈ R, j ∈ {∆+
r : ∆0

r ∈ ∆−
r,j}, (20)

∑

j∈Br

∑

i∈∆−

r,j

∑

t∈{Tj :t≤t0+g′r}

xtr,i,j +
∑

i∈∆−

r,∆∗
r

xt0+g′r+1
r,i,∆∗

r
= 1 ∀ r ∈ {R : B′

r = ∅}, (21)

t0 + 1 ≤
∑

j∈Br

∑

i∈∆−

r,j

∑

t∈Tj

txtr,i,j +
∑

i∈∆−

r,∆∗
r

(t0 + g′r)x
t0+g′r+1
r,i,∆∗

r

≤
∑

j∈∆+
r

∑

t∈Tj

(t− fr,∆0
r,j

+ g′r)x
t
r,∆0

r,j
∀ r ∈ {R : B′

r ̸= ∅}, (22)



∑

i∈∆−

r,j

∑

t∈Tj

xtr,i,j =
∑

k∈{∆+
r :j∈∆−

r,k
}

∑

t∈Tk

xtr,j,k ∀ r ∈ R, j ∈M, (23)

∑

i∈∆−

r,j

∑

t∈Tj

txtr,i,j ≤
∑

k∈{∆+
r :j∈∆−

r,k
}

∑

t∈Tk

(t− fr,j,k)x
t
r,j,k ∀ r ∈ R, j ∈M. (24)

3.5 Decision Variable Definitions

xtr,i,j ∈ {0, 1} ∀ r ∈ R, j ∈ ∆+
r , i ∈ ∆−

r,j, t ∈ Tj, (25)

yj ∈ {0, 1, . . . , nmin
j } ∀ j ∈ {RNA ∪RNP}, (26)

ztj ∈ {0, 1, . . . , nmin
j }, htj ∈ {0, 1} ∀ j ∈ RNS, t ∈ Tj , (27)

ztj ∈ {0, 1, . . . , nmin
j } ∀ s ∈ S, j ∈ RNM(s), t ∈

⋂

k∈RNM(s)

Tk, (28)

bts ∈ {0, 1} ∀ s ∈ S, t ∈
⋂

k∈RNM(s)

Tk, (29)

xRNP′

j ∈ {0, 1} ∀ j ∈ RNP, (30)

xRNP
t,j ∈ {0, 1} ∀ j ∈ RNP, t ∈ Tj , (31)

qr,j ∈ {0, 1, . . . ,min(c′r, k
max
j )} ∀ j ∈ P, r ∈ Rj, (32)

wj ∈ {0, 1, . . . , kmin
j } ∀ j ∈ P. (33)

4 Overview of Solution Approach

This section describes the general features of the ‘intelligent’ branch-and-bound procedure. This
procedure begins with a solution space reduction technique. Next, the initial mission plan serves
as the incumbent solution, where each resource begins at its current location (at time t0) and visits
all tasks in the resource’s initial route that have yet to be completed. ‘Infinite’ resources (IR)
are used to maintain feasbility, as pop-up tasks or tasks that were initially assigned to resources
that have been taken out of service will not be assigned in the incumbent solution. Because IR
are penalized, the incumbent objective function value may be a large negative number, depending
upon the quantity of IR that are required to ensure a feasible incumbent solution.

The linear programming (LP) relaxation will likely result in many fractional arcs that would
call for portions of each resource to be split across numerous arcs (or possibly along the same arc
at different times). Our approach is to use a guided tree search (intelligent branch-and-bound) to
build each resource’s path forward through the network, starting at the resource’s initial location
and terminating at a base node prior to exhausting its fuel supply.

At any point in the route construction procedure, IR may be employed to establish a feasible
(albeit heavily penalized) solution. As the branching process proceeds further down the branch-
and-bound tree, the number of tasks assigned to each resource increases, the number of IR required
decreases, and potentially good implementable solutions are generated. For this reason, a depth-
first branching strategy is used. Aside from the obvious advantage of reducing the reliance upon IR
more quickly, the depth-first strategy has lower memory requirements and is easier to implement
than other strategies.

To simplify explanation of the branching process, the ‘left’ branches in the branch-and-bound
tree correspond to the assignment of a resource to an arc, while the ‘right’ branches correspond to



the prohibition of the resource from taking said arc at any time. The exact nature of each assignment
is determined by the task type of the destination node in the candidate arc. Unlike standard branch-
and-bound approaches, in which a non-zero decision variable is selected, our approach may select
a decision variable with a value of zero in the LP relaxation. In this assignment branch, a selected
resource is forced to travel a certain arc. Depending upon the task type, the assignment may be at
the earliest feasible time, or it may be over a range of times. This concept is explained more fully
later in this section.

As each arc is assigned, additional valid cuts are added to strengthen the network constraints.
These cuts are motivated by the relative weakness of the network formulation. Although the
network formulation is valid, it is designed to be minimal, thus requiring fewer constraints to define
the still-sizable model. The advantage of this approach is that the model may be generated more
quickly. The obvious drawback is that the LP relaxation is not as tight. However, by adding
constraints on an as-needed basis, the network constraints are strengthened in a more efficient
manner, thus reducing the number of redundant constraints.

In the remainder of this section, details regarding the solution space reduction, the determina-
tion of resource routes from the LP relaxation, rules designed to select assignments in the modified
branch-and-bound procedure, and additional constraints included in the branching process are
detailed.

4.1 Reducing the Solution Space

To facilitate the rapid generation of attractive feasible solutions, a technique for reducing the size
of the solution space is proposed. This approach seeks to eliminate certain binary xtr,i,j decision
variables, which characterize each leg of the route assigned to resource r, that are unlikely to appear
in an optimal solution.

From the definition of xtr,i,j, the number of defined decision variables may be reduced by limiting

the size of ∆+
r , the set of nodes that may be visited by resource r. As in the definition, node j ∈ Br

will remain in set ∆+
r . To determine if task j ∈ M is included in set ∆+

r , first, let j ∈ ∆+
r if r

were initially assigned to perform task j (i.e., if parameter ar,•,j = 1). Next, if j is a pop-up task
and er,j > 0, then let j ∈ ∆+

r . Finally, for each arc (i, k) in the initial mission plan of resource
r (i.e., for all arcs (i, k) such that parameter ar,i,k = 1), let task j ∈ M be assigned to the set
∆+

r if the following conditions are met: (1) er,j > 0 (resource r is capable of performing task
j), (2) the allowable time window for task j overlaps the time windows for nodes i and k (i.e.,
min(Tj) ≤ max(Tk) and max Tj ≥ min(Ti)), and (3) task j lies within a pre-determined distance
from the arc between nodes i and k.

This last condition is applied by constructing overlapping circles of a pre-determined radius
along each initially-assigned arc, where the first circle is centered at the location of node i and
all subsequent circles are centered at the intersection of the preceeding circle with the arc. This
facilitates construction of the region that is ‘near’ the arc, allowing rapid calculations to identify the
nodes within this region. In this study, we state the radius of each circle in terms of the percentage
of the distance between the two nodes comprising an arc, and denote this radius as RadScale.

An example of the solution space reduction approach is shown in Figure 1, where a pop-up
task (node 7) appears at time 3. Bracketed numbers above each node represent the allowable time
windows, while numbers below nodes represent the time at which r was initially assigned to begin
service at that node. The reduced solution space is represented in Figure 1b, where node j is shown
as a dark square if j ∈ ∆+

r . Node 5 is not included in ∆+
r because it lies outside of the shaded

area. Notice that, although node 6 lies within the shaded area, its time window does not overlap
the windows for nodes 1 and 2.
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(a) Initial assigned route for resource r. Tasks 4–6
were initially assigned to other resources.
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(b) ∆+
r is determined by the solution space reduction

approach with RadScale = 0.25.

Figure 1: Application of the Partitioning Approach

Thus, the proposed solution space reduction approach takes into account the spatiotemporal
aspects of the initial mission plan by including tasks that are ‘near’ the initial route and also have
time windows that overlap the time windows of the nodes contained in the initial route. It should
be noted that if RadScale = 0, only initially-assigned tasks and pop-ups are included in ∆+

r ; if
RadScale = ∞, all tasks for which r is capable of performing are included in ∆+

r . Our solution
approach dynamically varies the size of RadScale.

4.2 Extracting Resource Routes from the LP Relaxation

The solution to the LP relaxation may be used to trace the progress of each resource’s route,
from ∆0

r to the last consecutive integer assignment. For example, if xt3
r,∆0

r,3
= xt2r,3,2 = xt5r,2,5 = 1,

then resource r has a partially completed route beginning at ∆0
r and terminating at node 5. More

formally, let ir represent the last assigned node in the route for resource r and let tr represent the
time associated with the beginning of service at node ir. Because each resource r begins at node
∆0

r at time slice t0, we may initialize ir = ∆0
r and tr = t0. Next, if xtr,ir,j = 1 for any j ∈ ∆+

r and
t ∈ Tj , then resource r is assigned to arc (ir, j). Update the last known node for resource r by
setting ir = j and tr = t. If ir is a base node, the route for resource r has been fully constructed
from source to sink. Otherwise, continue this process until xtr,ir,j < 1. At this point, there will be

multiple decision variables emanating from node ir with fractional values (i.e., xtr,ir,j < 1 for some

j ∈ ∆+
r and at some time t ∈ Tj). Thus, the LP relaxation does not provide an explicit assignment

for the next leg in the route of resource r, and a forced assignment must be made.
To assist in the determination of the forced assignment, these fractional arcs are classified

according to whether a particular fractional arc appears (chronologically) before or after the last
assigned arc in a resource’s path. ‘Out-of-Sequence’ Arcs are fractional arcs for resource r that
emanate from node ir and have an assigned time prior to tr, where tr represents the time at which
node ir is slated to begin service in the partially-constructed route. We define set OoS to be all
(r, ir , j, t) such that 0 < xtr,ir,j < 1 and t < tr. Although it may be feasible to assign r to out-of-
sequence arc (ir, j), it is clearly not feasible to do so at time t. ‘Sequenced’ Arcs are fractional
arcs that emanate from node ir and have an assigned time after tr. We define set Seq to be all
(r, ir , j, t) such that 0 < xtr,ir ,j < 1 and t > tr. The Seq set identifies all non-zero decision variables

xtr,ir,j < 1 for which time t is after the time service begins at node ir. If t ≥ tr + fr,ir,j, it may
be feasible to assign r to arc (ir, j) at time t. In the event that node j is a task that possesses
timing constraints requiring multiple resources to begin service simultaneously, time t might not
be a feasible start time unless all other resources assigned to j may also begin service at time t.



Note that the ILP formulation contains constraints that prohibit resources from multi-tasking, thus
preventing the occurrence of xtr,j,k > 0 for any t = tr.

An example of OoS and Seq fractional arcs for a single resource is presented in Figure 2. Here,
previous iterations of the branching procedure have already constructed a partial route from ∆0

r to
task 1 to task 3, such that ir = 3 and tr = 10. The numbers above nodes 1 and 3 represent the
times at which r is assigned to begin service at the respective tasks. The numbers above nodes 4
– 6 represent the earliest feasible time for which r could be assigned to these tasks, where travel
times are shown along each arc. Finally, the closed interval of allowable time slices for each task is
shown below the as-yet-unassigned nodes.
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Decision Variable Value Arc Type
x5r,3,5 = 0.25 out-of-sequence (dotted)
x6r,3,4 = 0.20 out-of-sequence (dotted)
x7r,∆0

r,1
= 1.00 constructed route (solid)

x10r,1,3 = 1.00 constructed route (solid)
x12r,3,6 = 0.20 sequenced (dashed)
x13r,3,4 = 0.35 sequenced (dashed)

Figure 2: An example of ‘out-of-sequence’ and ‘sequenced’ arc types.

4.3 Determining the Earliest Starting Time for the Next Destination

One of the key aspects of the route construction procedure is that resources are assigned to the next
node at the earliest feasible time. The determination of this time, denoted as tearly, is task-type-
specific. For RNA and ONA tasks, as well as travel to base (terminal) nodes, the determination
of tearly is straightforward. Given that r begins service at node ir at time tr, the earliest feasible
time to begin service at some node j′ would be the minimum allowable time of node j that is not
prior to tr + fr,ir,j′, where fr,ir,j′ represents the minimum number of time intervals required for
resource r to travel arc (ir, j

′). For RNP tasks, where resources must observe a lag time after
performing task k ∈ RNP ′(j), the earliest feasible time assignment for r must account for the time
window for task j, the travel time for the resource from ir to j, as well as the required lag time after
task k is completed. Because RNA, ONA, RNP , and base nodes do not require concurrent time
coordination with other nodes, the assignment phase of the branching process (the ‘left’ branch)
may be used to force resource r to travel arc (ir, j) and begin service at time tearly. Thus, the

assignment would be to set xt
early

r,ir,j = 1 for the appropriate resource r and destination j.
For tasks involving time-coordination considerations, additional logic is required to determine

the earliest feasible starting time. For RNS tasks (where multiple resources must begin service at
a single task simultaneously) and RNM(s) tasks (where multiple resources must begin service at
multiple tasks simultaneously), the earliest feasible time assignment for resource r must account
for the time window for task j and the travel time for the resource from ir to j. It must also
account for the earliest feasible time that all other resources assigned to j could begin service. The
determination of this time, denoted by tlatestj , may be found by parsing the solution from the LP

relaxation, such that tlatestj = max
r′∈R

{min(t ∈ Tj : xtr′,ir′ ,j > 0)} This is the latest time that task

j ∈ {RNS ∪ RNM(s)} has been assigned, and it represents the earliest possible time that any
resource could be assigned to coordinated task j.



Due to the time-coordination requirements that must be observed by multiple resources, the
assignment phase of the branching procedure must not blindly force a given resource to begin
service at task j ∈ {RNS ∪RNM(s)} at the earliest feasible time. Instead, the assignment should
first force the resource to travel arc (ir, j) and begin service on or after tearly. Next, the assignment
of the specific time for which service at task j is to begin may be set for all resources only after it
is clear that no other resources could be assigned to j. Let t′′ = tearly if a resource has not been
assigned to a particular arc (ir, j), and t′′ = max(Tj) if a resource has already been assigned to
(ir, j). The value of t

′′ is used to determine if the branching process should assign a resource to arc
(ir, j) at some time on or after tearly, or if it should assign all resources to begin servicing j at time
tearly. We will assign all resources that have been routed along arc (ir, j) to begin service at task j
only if all other resources have been assigned to tasks that begin after max(Tj).

Because the values of tearly and t′′ are used extensively in our two proposed branching rules, the
following function, findEarlyStart, is defined. This function returns tearly and t′′ for a particular
candidate assignment of resource r to some arc (ir, j).

Function findEarlyStart(r, ir, tr, j):

t′′ = tearly = min(t ∈ Tj : t ≥ tr + fr,ir,j)
tlatestj = max

r′∈R
{min(t ∈ Tj : x

t
r′,ir′ ,j

> 0)}

if j ∈ (RNS ∪RNM(s)) then
tearly = max(tearly, tlatestj )

if
∑

tj∈Tj :tj≥tlatestj

x
tj
r,ir ,j

= 1 then

t′′ = max(Tj) [r assigned to task j.]
else

t′′ = tearly

end if

end if

if j ∈ RNP then

tRNP ′

= max
r′∈R,k∈RNP ′(j),tk∈Tk

(dk + tk : xtkr′,ir′ ,k
> 0)

tearly = min(t ∈ Tj : t ≥ tr + fr,ir,j and t ≥ tRNP ′

+ lagj)
t′′ = tearly

end if

return tearly and t′′

4.4 Selecting the Assignment

After solving the LP relaxation and extracting the partially-constructed route for each resource,
the branching process requires guidance in selecting the next assignment of a resource r to some
arc (ir, j). Two rules for determining this assignment are proposed, and are identified as Rules A1
and C1. Three other rules were explored in [16], but for the sake of brevity are omitted from this
discussion. Both branching rules determine a resource (r′), a next destination node (j′), and the
corresponding service start time (t′).

4.4.1 Rule A1

Rule A1 first attempts to select the assignment of a resource based on the OoS arcs. The rationale
is that these arcs appear out-of-sequence because subsequent nodes in the route require these tasks



to be performed early. As a result, although the times assigned to these OoS arcs are infeasible in
the LP relaxation, it might be helpful to assign these nodes as early as possible.

If no feasible assignments for OoS arcs were found, the rule attempts to make the assignment
based on sequenced fractional arcs that lead to task nodes. Here, we look at each arc in the order
of time in the decision variable subscripts. Thus, preference is given to nodes that are assigned
early in the fractional solution. Arcs leading to bases are considered only if no feasible assignment
to a task node can be found. This is motivated by the fact that bases represent sink nodes in the
network, such that resources may not return to service after visiting a base. In this manner, Rule
A1 attempts to delay the assignment of resources to bases.

Finally, if neither OoS nor Seq arcs provide feasible assignments, the Seq arc with the highest
fractional decision variable value is chosen. As this will result in an infeasible assignment, it is
unnecessary to solve the LP relaxation after making this assignment. Instead, the ‘right’ branch
prohibiting the infeasible arc may be taken, where (hopefully) a fractional arc leading to a time-
feasible destination will be produced in the resulting LP relaxation. Note that Rule A1 does not
exclude any potentially-valid solutions from consideration. As such, Rule A1 is not a heuristic
approach for a given partition of the solution space, provided that runtimes are sufficiently long to
allow the branching process to fathom all nodes in the branch-and-bound tree. Rule A1 may be
expressed as follows:

Step 0 – Initialization:
Set r′ = j′ = t′ = ∅ (No assignment has been determined).
Set tasgn = max(T ) + 1 (Initialize to a late time).

Step 1 – From the set of all out-of-sequence fractional arcs, find the destination that may be feasi-
bly started the earliest. Break ties by selecting resources in ascending order.

for all (r, ir, j, t) ∈ OoS do

(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (t′′ < tasgn) then

r′ ← r, j′ ← j, t′ ← tearly, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 2. Else, stop, returning the values for
r′, j′, and t′.

Step 2 – Investigate the set of sequenced fractional arcs leading to task nodes, in ascending order
of the time slice associated with the fractional decision variable. Find the first destination
that may be feasibly reached.

tmin = max(T ) + 1 (Initialize to a late time).
for all (r, ir, j, t) ∈ {Seq : j ∈M} do

% Search the sequenced fractional arcs in ascending order of t.
if t < tmin then

(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly ̸= ∅) then

r′ ← r, j′ ← j, t′ ← tearly, tmin ← t
end if

end if

end for

if no feasible assignment was found then go to Step 3. Else, stop, returning the values for



r′, j′, and t′.

Step 3 – Investigate the set of sequenced fractional arcs leading to sink nodes. Select the time-
feasible sink destination with the largest corresponding fractional decision variable value.

xmax = 0 (Initialize to a small value).
for all (r, ir, j, t) ∈ {Seq : j /∈M} do

% Search sequenced fractional arcs in descending order of fractional value of xtr,ir,j :

if xtr,ir,j > xmax then

(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly ̸= ∅) then

r′ ← r, j′ ← j, t′ ← tearly, xmax ← xtr,ir,j
end if

end if

end for

if no feasible assignment was found then go to Step 4. Else, stop, returning the values for
r′, j′, and t′.

Step 4 – None of the fractional arcs represent time-feasible assignments for any resource. Se-
lect the sequenced fractional arc, leading to a task, with the largest decision variable value.

xmax = 0 (Initialize to a small value).
for all (r, ir, j, t) ∈ {Seq : j ∈M} do

% Search sequenced fractional arcs in descending order of fractional value of xtr,ir,j :

if xtr,ir,j > xmax then

r′ ← r, j′ ← j, t′ ← tearly, xmax ← xtr,ir,j
end if

end for

4.4.2 Rule C1

Due to the penalty assessed on ‘infinite’ resources and ‘infinite’ expendable payload, fractional solu-
tions from the LP relaxation attempt to minimize the values attributed to these decision variables.
As a result, the objective function value obtained by the LP relaxation may provide a poor bound.
In an effort to obtain a more realistic upper bound, Rule C1 applies a penalty to the objective
function value of the LP relaxation. This bound is not necessarily valid, as it is possible that an
integer solution that utilizes an IR for a less-penalized task may exist. However, it will always be
true that an integer solution constructed from an LP relaxation that contains a non-zero value for
an IR will have a non-zero integer value for the IR. Furthermore, if all required tasks have identical
priority values (pj), then the penalty described below will be valid. If ZLP represents the objective
function value of the LP relaxation, we apply the penalty as follows:

ZLP′

= ZLP −
∑

j∈{RNA∪RNP}

pjγ(⌈yj⌉ − yj)

−
∑

j∈{RNS∪RNM(s)}

∑

t∈Tj

pjγ(⌈z
t
j⌉ − ztj)−

∑

j∈P

pjγ(⌈wj⌉ − wj),



where pj is the priority of task j, γ represents the scaling parameter used in the objective function
term for ‘infinite’ resources and payload, yj and ztj are the integer decision variables for IR, wj is
the integer decision variable for ‘infinite’ payload, P is the set of tasks requiring payload delivery,
and ⌈·⌉ is the ceiling operator. If the resulting value of ZLP′

is less than the incumbent objective
function value, we fathom at the previous node of the branch-and-bound tree.

Aside from the inclusion of the objective function penalty, Rule C1 features additional logic not
found in Rule A1. For example, preference is given to pop-up tasks that may be assigned without
requiring an early-arriving asset to loiter while waiting for a task’s earliest allowable starting service
time. Next, preference is given to arcs that were assigned in the initial mission plan. Finally, if no
feasible assignment can be found from the OoS and Seq candidate arcs, the current node of the
branch-and-bound tree is preemptively fathomed. Rule C1 may be expressed as follows:

Step 0 – Bound Revision and Initialization:

if ZLP′

is less than the incumbent then
Go to Step 8.

else

Set r′ = j′ = t′ = ∅ (No assignment has been determined).
Set tasgn = max(T ) + 1 (Initialize to a late time).

end if

Step 1 – From the set of out-of-sequence fractional arcs, select the earliest pop-up task that may
be performed without loitering.

for all (r, ir, j, t) ∈ (OoS : j is a pop-up task) do
(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if ((tearly < tasgn) and (tearly = tr + fr,ir,j)) then

r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 2. Else, stop, returning the values for
r′, j′, and t′.

Step 2 – From the set of out-of-sequence fractional arcs, select the earliest destination that matches
an initial assignment.

for all (r, ir, j, t) ∈ (OoS : ar,ir,j = 1) do
(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly < tasgn) then

r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 3. Else, stop, returning the values for
r′, j′, and t′.

Step 3 – From the set of out-of-sequence fractional arcs, select the destination node that may be
performed earliest.

for all (r, ir, j, t) ∈ OoS do

(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly < tasgn) then



r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 4. Else, stop, returning the values for
r′, j′, and t′.

Step 4 – From the set of sequenced fractional arcs, select the earliest pop-up task that may be
performed without loitering.

for all (r, ir, j, t) ∈ (Seq : j is a pop-up task) do
(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if ((tearly < tasgn) and (tearly = tr + fr,ir,j)) then

r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 5. Else, stop, returning the values for
r′, j′, and t′.

Step 5 – From the set of sequenced fractional arcs, select the earliest destination that matches
an initial assignment and has a corresponding fractional decision variable value of at least
0.25.

for all (r′, ir′ , j
′, t′) ∈ (Seq : ar′,ir′ ,j′ = 1 and xt

′

r′,ir′ ,j
′ ≥ 0.25) do

(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly < tasgn) then

r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 6. Else, stop, returning the values for
r′, j′, and t′.

Step 6 – From the set of sequenced fractional arcs, select the pop-up task that may be performed
earliest.

for all (r, ir, j, t) ∈ (Seq : j is a pop-up task) do
(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly < tasgn) then

r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for

if no feasible assignment was found then go to Step 7. Else, stop, returning the values for
r′, j′, and t′.

Step 7 – From the set of sequenced fractional arcs, select the destination that may begin service
earliest.

for all (r, ir, j, t) ∈ Seq do

(tearly, t′′) = findEarlyStart(r, ir, tr, j)
if (tearly < tasgn) then

r′ ← r, j′ ← j, t′ ← t, tasgn ← t′′

end if

end for



if no feasible assignment was found then go to Step 8. Else, stop, returning the values for
r′, j′, and t′.

Step 8 – Artificially (heuristically) fathom:
No time-feasible destinations are available from the fractional arcs.
Fathom the current node and take the ‘right’ branch of the parent node.

4.5 Applying the Assignment & Valid Cuts – ‘Left’ Branch

Both of the proposed branching rules determine values for r′, ir′ , j
′, and t′, assuming that a feasible

assignment can be made. These values indicate the resource that is to be assigned along arc (ir′ , j
′),

and the earliest feasible starting time for which node j′ may be assigned. If no feasible assignment
is found, the ‘right’ branch should be followed.

Using the values determined by a branching rule, the assignment should be implemented in the
branching process. As previously mentioned, the nature of the assignment is dictated by the type
of node j′. If j′ ∈ {RNA ∪ ONA ∪ B}, the assignment is simply to force r′ along arc (ir′ , j

′) at
time t′. Likewise, if j′ ∈ RNP , r′ is assigned to task j′ at time t′. Because RNP tasks rely upon
additional binary decision variables, the values of these variables may also be assigned. Specifically,
xRNP
t′,j′ is the binary decision variable that indicates whether task j′ is started at time t′, and xRNP ′

j′

is the binary decision variable that indicates whether at least one task from the set RNP ′(j′) is
performed.

However, if j′ is a time-coordinated task (RNS or RNM(s)), two types of assignments are
possible. The first type assigns resource r′ to arc (ir′ , j

′) at any time on or after t′. It also prohibits
any other resource assigned to task j′ from performing the task before time t′. In this case, the
assignment allows the LP relaxation to determine feasible starting times for all resources assigned
to task j′. Of course this does not guarantee that an integer assignment of resources to j′ at a
particular time will be found by the LP relaxation. Therefore, if task j′ were selected by a branching
rule, and if all candidate resources have been forced to perform task j′ (via a previous assignment
that routed resources to task j′ without specifying a time for service to begin), then the second
type of assignment will force these resources to start task j′ at a particular time t′.

Note that, for this second case, task j′ ∈ {RNS ∪ RNM(s)} would only be selected by any
of the branching rules if all other resources assigned to other nodes have assignment times that
are after max(Tj′). Thus, the decision to fix the starting time of task j′ is delayed until all other
resources would have had the opportunity to be assigned to task j′.

The logic governing the assignment process is as follows:

if j′ ∈ {RNA ∪ONA ∪B} then

xt
′

r′,ir′ ,j
′ = 1 [Add assignment to force r′ along arc (ir′ , j

′) at time t′.]

else if j′ ∈ RNS then

if
∑

t∈Tj′ :t≥t′

xtr′,ir′ ,j′ < 1 then

∑

t∈Tj′ :t≥t′

xtr′,ir′ ,j′ = 1 [Force r′ along arc (ir′ , j
′) at some time not prior to t′.]

htj′ ≥ xtr′,ir′ ,j′ ∀ t ∈ {Tj′ : t ≥ t′} [Ensure htj′ assumes the proper value.]



∑

t∈{Tj′ :t<t′}

htj′ = 0

else

ht
′

j′ = 1 [Force all resources performing task j′ to begin at time t′.]

end if

else if j′ ∈ RNM(s) for some s ∈ S then

if
∑

t∈Tj′ :t≥t′

xtr′,ir′ ,j′ < 1 then

∑

t∈Tj′ :t≥t′

xtr′,ir′ ,j′ = 1 [Force r′ along arc (ir′ , j
′) at some time not prior to t′.]

bts ≥ xtr′,ir′ ,j′ ∀t ∈ {Tj′ : t ≥ t′} [Ensure bts assumes the proper value.]
∑

t∈{Tj′ :t<t′}

bts = 0

else

bt
′

s = 1 [Force all resources performing tasks in set s ∈ S to begin at time t′.]

end if

else if j′ ∈ RNP then

xt
′

r′,ir′ ,j
′ = 1 [Force r′ along arc (ir′ , j

′) at time t′.]

xRNP
t′,j′ = 1 [Add constraint to indicate that RNP task j′ begins service at time t′.]

if yj′ > 0 then

xRNP ′

j′ = 1 [Ensure that at least one predecessor task from RNP ′(j′) is performed.]

end if

end if

if j′ ∈ RNP ′(k) for any k ∈ RNP then

xRNP ′

j′ = 1 [Ensure that successor task j′ will be performed if the predecessor is assigned.]

end if

It should be noted that these assignments are determined by the type of task j′. Therefore,
problem instances not involving certain task types do not require the use of all conditional (if)
statements. Thus, a simplified version of the assignment process may be obtained.

In addition to applying the given assignment, the branching procedure also includes valid cuts to
strengthen subsequent solutions to the LP relaxation. These cuts exploit the fact that the resource
routes are constructed forward, starting from each resource’s source node. Given that resource r′

is assigned to node j′ above, and that t′ represents the earliest feasible time for which service at



node j′ may begin, the first cut prevents the next node following j′ from being assigned too early:

∑

k∈{∆+
r :j′∈∆−

r′,k
}

∑

t∈{Tk :t<t′+fr′,j′,k}

xtr′,j′,k = 0.

Here, resource r′ may not be assigned to any arc (j′, k) at a time that does not satisfy the travel
time requirements between nodes j′ and k.

Next, cuts should be added to eliminate other time-infeasible fractional assignments that ap-
peared in the solution to the LP relaxation. Let Ar′ be defined to be the set of arcs that have
non-zero fractional values for resource r′ and have times that are prior to t′, such that k ̸= ir′
and l ̸= j′ for any (k, l) ∈ Ar′ . For example, suppose the solution to the LP relaxation contains
0 < xtr′,k,l < 1 for some (k, l) ∈ Ar′ and t < t′. Based on the assignment above, a route for r′ has
been constructed through node j′ at time t′. Therefore, it would be infeasible for r′ to be assigned
to any arc in Ar′ prior to the time required for r′ to travel along arcs (ir′ , j

′), (j′, k), and (k, l).
The valid cuts that prohibit r′ from being assigned to arcs in Ar′ at infeasible times are given by:

∑

t∈{Tl:t<t′+fr′,j′,k+fr′,k,l}

xtr′,k,l = 0 ∀ (k, l) ∈ Ar′ ,

Recall that the fr′,j′,k parameter captures the travel time for r′ along arc (j′, k), as well as the
service duration at node j′, dj′ . The fr′,k,l parameter, then, also captures dk and the travel time
along (k, l).

4.6 Prohibiting the Assignment – ‘Right’ Branch

When taking a ‘right’ branch in the branch-and-bound tree, the single constraint is given by:

∑

t∈Tj

xtr′,ir′ ,j′ = 0,

for the given r′, ir′ , and j′. Thus, resource r′ is prohibited from taking arc (ir′ , j
′) at any time.

We note that [8] employ a similar approach of either requiring or prohibiting an assignment by
branching on a summation of decision variables, in the context of a manpower allocation problem
with job-teaming constraints. However, due to the nature of their problem formulation, their
approach also requires branching on a continuous decision variable representing the assignment
time of team members to accomplish team coordination.

5 Solution Approach

Preliminary testing and tuning of both branching rules, RadScale values, and α values indicated
that neither rule was clearly dominant across all problem instances. This testing also showed the
state space reduction approach to be a beneficial aspect of our solution procedure. Furthermore,
we found that the speed and quality of solutions are influenced by the value of the α parameter,
which dictates the relative degree of trade-off between maximizing overall mission effectiveness
(α = 1) and minimizing changes to the initial mission plan (α = 0). The probable explanation for
this behavior is that smaller α values correspond to a higher reliance on the initial mission plan,
whereby the initial plan tends to ‘guide’ the LP relaxation toward integer valued solutions. In
Section 6, results are reported for instances of α = 0.25 and α = 0.75.
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Figure 3: Algorithm Flowchart

Although neither branching rule promises to be most effective for all problems, the initial testing
revealed that at least one rule produces improved solutions for any given problem. Therefore, our
algorithm attempts to solve the dynamic airborne resource rerouting problem in three phases, such
that different combinations of branching rules and solution spaces may be employed. The maximum
allowable runtime for the algorithm, denoted as maxTime, is pre-specified by the user. As such,
each phase has a runtime limit of maxTime/3. Each phase is characterized by the selection of a
branching rule, a radius scale for solution space reduction, and an augmentation of the α parameter.

Because Rule C1 had marginally superior performance on the preliminary test problems, both
in terms of solution quality and runtime, it was chosen to be the branching rule applied in the first
phase. Similarly, a RadScale value of 10% was selected for the first phase because it was the largest
value that did not result in a noticeable decline in solution quality. Finally, given that smaller α
values tend to produce better solutions, the objective function in the first phase replaces α by α0/2,
where α0 represents the decision maker’s preferred (pre-specified) value of α. Upon selecting these
algorithm parameters, the ‘intelligent’ branch-and-bound procedure commences, where the starting
incumbent solution is determined by the initial mission plan. The branch-and-bound procedure is
executed until either an optimal solution is found, or the runtime reaches a limit of maxTime/3.

The algorithm parameters employed by phase two of the algorithm are determined by the quality
of the solution obtained in phase one. If no improved solution was found, it may be the result of
Rule C1 being ineffective for this problem, the solution space being too expansive, or the α value
being too large. Due to the time critical nature of the dynamic rerouting problem, it is impractical
to change these parameters individually. Instead, all three parameters are changed such that Rule
A1 is employed, RadScale is reduced to 2%, and α is lowered to α/4. If an improved, albeit
not provably optimal, solution was found in phase one, we again change the algorithm parameters
in phase two. However, this time we increase both the size of the solution space (to consider
additional candidate arcs) and the value of α (to match the original input value). We also change
the branching rule to Rule A1. Finally, if the optimality condition is reached in phase one, we
continue to apply Rule C1 in phase two. However, the value of RadScale is increased to explore a
larger solution space. Furthermore, α is reset to its original input value to be consistent with the
decision-maker’s preference for the relative degree to which the objectives of maximizing overall
mission effectiveness and minimizing changes to the initial mission plan are weighted.

A similar process is applied in the third phase of the algorithm, where the algorithm parameters
are determined by the performance of the algorithm in phase two. Figure 3 shows a flowchart of



algorithm parameter settings, where each row of the flowchart corresponds to one of the three
phases. Based on this flowchart, the proposed algorithm may be outlined as follows:

Initialization Specify the maximum allowable runtime for the algorithm, maxTime.

Phase 1 Select Rule C1 for branching, apply the solution space reduction technique usingRadScale =
0.10, and set α = α0/2.

• Use the initial mission plan to determine the incumbent solution.
• Execute the branch-and-bound procedure until either

– the optimal solution for this phase is found, or
– the runtime reaches maxTime/3.

Phase 2 Based on the solution obtained in the previous phase, select the appropriate branching
rule, apply the solution space reduction procedure according to RadScale, and update the
value of α.

• Use the best known solution from the previous phase to determine the incumbent so-
lution, noting that if the value of α has changed, so to will the value of the objective
function.

• Execute the branch-and-bound procedure until either

– the optimal solution for this phase is found, or
– the runtime reaches maxTime/3.

Phase 3 Repeat Phase 2, selecting the branching rule, RadScale, and α values from the appro-
priate block in the bottom row of Figure 3.

6 Numerical Analysis

6.1 Problem Generation

Because there are no applicable benchmark problems on which to test our solution approach, test
problems were created. Readers interested in how these test problems were generated may refer to
[16] or contact the authors directly.

Table 4 shows the major parameter settings that were adjusted to create our test problems.
Each combination of parameter values is used to generate three replications. For example, for
problems involving 15 initial tasks, 72 distinct problems were generated by the combinations of
parameter settings. Initially-assigned tasks have not been completed as of the time that the pop-
up event occurred. The location of each task is generated uniformly across a battlespace area of
size (∼unif(50,400)) × (∼ unif(50,400)). The resulting battlespace sizes range from approximately
the area of Oklahoma City to the area of the state of California. Two base locations are defined
for each problem. The ‘time window scale’ refers to the width of each task’s time window, as a
percentage of the initial mission horizon. Although our model and solution approach are capable of
accommodating disjoint time windows, in this analysis each task has a single time window composed
of consecutive time intervals. The Loiter Time is the amount of slack that is built into the initial
mission plan at each task. It is uniformly generated over the range of values. For problems involving
a “none” payload value, no tasks require payload delivery. For problems involving “low” payload,
the minimum payload quantity to be delivered, kmin

j , was determined according to Table 5.
Each task j is characterized by several parameters. The actual value of each parameter may

be drawn from a distribution, as shown in Table 5. The task duration, dj , is measured in units of



Table 4: Design of Experiments

Parameter Values

Initial Tasks 15 30 50
Resources 2 2, 4 3, 5
Pop-ups 2, 6
Time Window Scale 5%, 10%, 25%
Loiter Time [minutes] ∼unif(0,10), ∼ unif(5,30)
Payload None, Low

Table 5: Task Parameters

Parameter Value Probability

dj

0 0.50
∼ unif(1,5) 0.20
∼ unif(5,10) 0.20
∼ unif(10,20) 0.10

pj

10 (high) 0.35
5 (medium) 0.55

1 (low) 0.10

nmax
j

1 0.70
2 0.30

kmin
j

0 0.85
1 0.10
2 0.05

minutes. The task priority, pj, is used to determine whether a task is required or optional, such
that all low-priority tasks are assumed to be optional (i.e., of the ONA task type), while medium-
and high-priority tasks are assumed to be required. The maximum number of resources that may
be assigned to task j is given by nmax

j . For required tasks, the minimum number of resources,

nmin
j , is ∼ unif(1, nmax

j ), while nmin
j = 0 for optional tasks. Finally, the minimum required payload

delivery is represented by kmin
j .

The current location of each resource at the time of the pop-up event, represented by node
∆0

r, is generated uniformly across the battlespace area to simulate the event that the resources
are already in flight when pop-ups are identified. Resources are classified as being one of three
‘types,’ according to the following probabilities: Resources are of type 1 with probability 0.50, of
type 2 with probability 0.40, and of type 3 with probability 0.10. Resource type 1 has a velocity
of 170 miles per hour, while types 2 and 3 have velocities of 150 and 130, respectively. Using these
resource types, effectiveness values for a given task may be assigned as per Table 6.

Table 6: Task Effectiveness by Resource Type

Task Effectiveness Probability

5 (highly effective) 0.15
3 (moderately effective) 0.30

1 (barely effective) 0.30
N/A (unable to perform this task) 0.25



Table 7: Summary of algorithm performance.

Initial Solution Time [seconds] OFV % Impr
Tasks Approach Mean Std Dev Limit Mean Std Dev Mean Std Dev % Failed to Improve

15
Heuristic 13.57 13.26 30 -57.09 87.43 86.97 20.4 0.00 (0 of 144)
CPLEX 13.39 12.49 30 -82.86 131.11 81.53 28.44 7.64 (11 of 144)

30
Heuristic 24.65 9.78 30 -145.38 164.83 63.32 35.55 7.99 (23 of 288)
CPLEX 23.65 10.28 30 -234.27 264.43 45.31 43.41 42.36 (122 of 288)

50
Heuristic 26.93 7.43 30 -235.69 251.83 51.78 37.94 13.54 (39 of 288)
CPLEX 27.59 6.30 30 -368.60 267.61 17.49 32.89 74.31 (214 of 288)

6.2 Algorithm Performance

In this section the proposed algorithm is compared to CPLEX’s MIP solver. Each test problem
utilizes a time interval size of 1% of the mission horizon. For example, a 5-hour mission would be
partitioned into 3-minute time intervals, offering a high degree of granularity. An IR penalty of 10,
matching the value of the highest-priority task, is applied. The β parameter, which governs the
degree to which the objective function is weighted regarding the minimization of total travel time,
is set to 0.7. The value of α is tested at values of 0.25 and 0.75. The maximum runtime for our
algorithm and CPLEX is 30 seconds for each problem.

CPLEX’s callable library functions are utilized to add and remove constraints in our branch-
and-bound algorithm. This relies on the LP relaxation of the problem, and our constraints are
added to elicit an integer-valued solution. The branch tolerance for our algorithm is set to 0.5%,
while CPLEX’s default tolerance is 0. Although this appears to put our algorithm at an advantage,
initial testing revealed that CPLEX demonstrated better performance with a tolerance of 0, rather
than 0.5% (recall that solution time is limited in any case). All test problems were conducted using
CPLEX 12.2.0 on an HP 8100 Elite desktop PC, with a quad-core Intel i7-860 processor running
Ubuntu Linux 10.10 in 64-bit mode.

Figure 4 provides a summary of the percentage of test problems for which each approach was
able to find an improved solution over the initial mission plan. Table 7 provides a more detailed
comparison of our algorithm to CPLEX’s MIP solver, where ‘OFV’ represents the objective function
value, ‘% Impr’ represents the percentage improvement of the solution over the initial mission plan
(our first incumbent solution), and ‘% Failed to Improve’ represents the percentage of problems for
which the solution approach did not find any solutions that were better than the initial mission plan.
It is observed that, as the problem size increases, this percentage grows dramatically for CPLEX.
These results indicate that our algorithm outperforms CPLEX in terms of solution quality across
all problem sizes. However, in terms of solution time, the two approaches are very similar. This is
not surprising, given the limited runtime allowance for these difficult problems.

Figure 5 contains summary boxplots, grouped by the number of initially-assigned tasks in each
data set.

7 Summary and Future Research

An algorithm for dynamically rerouting and rescheduling airborne platforms was presented. This is
an improved branch-and-bound algorithm in which additional cuts are added to tighten subsequent
bounds. In this algorithm, resource routes are constructed from source nodes to sink nodes, where
resources are assigned to nodes at the earliest feasible time. The assignments made in each node
of the branch-and-bound tree are based on the task type.

The proposed algorithm employs a solution space reduction procedure that reflects the spa-
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Figure 4: Summary of algorithm performance.

tiotemporal aspects of the initial mission plan and two different branching rules. One of the key
features of the branching rules is that decision variable assignments that occur during the branching
process do not require the selection of a decision variable containing a non-zero fractional value
in the LP relaxation. Instead, the branching rules use the LP relaxation to find candidate arcs
between nodes in the network, and then the appropriate resource is routed to the next node at
the earliest feasible time. As a result, the effective solution space is reduced. Additionally, rather
than setting a single decision variable value equal to zero when taking the ‘right’ (prohibit) branch
in the branch-and-bound tree, the approach prohibits a resource from taking an arc at any time.
Numerical analysis indicates that this approach outperforms CPLEX on a set of realistically-sized
problems and provides improved solutions in a limited time.

Although the performance results are encouraging for large-scale problems of up to 50 tasks,
myriad opportunities for further study exist. First, the authors plan to evaluate the proposed
solution approach on a variety of other vehicle routing problems that do not require complex co-
ordinated tasks. Specifically, this may include the dynamic vehicle routing problem (c.f., [10]) and
the dynamic assignment problem (c.f., [23]). This should require only minor modifications beyond
simply removing the elements of the algorithm that explicitly account for the unused task types.
Such research may also afford the opportunity to integrate additional branching rules into the al-
gorithm. Previous testing (see [16]) indicates that combinations of additional branching rules may
offer even greater performance, although at the expense of increased algorithmic complexity. Ad-
ditionally, modified solution space reduction techniques could prove to be beneficial. Furthermore,
as this work represents the first solution approach for this dynamic rerouting problem involving
complex task types, there are opportunities to develop alternative solution techniques, including
metaheuristics, and compare these against the proposed algorithm. For still-larger problems, the
branch-and-bound approach may prove to be time prohibitive. Although there is always the possi-
bility of employing faster computing power, it is likely the case that new solution approaches will
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be required for very large-scale problems.
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