IE 555 – Programming for Analytics – Spring 2017

Instructor: Dr. Chase Murray
E-mail: cmurray3@buffalo.edu. Please include “IE 555:” in the subject.
Office: 309 Bell Hall
Office Hours: Posted on UBlearns

Teaching Assistant (TA): See UBlearns for contact information, office hours, and office location.

- Credit Hours: 3 (Lecture)
- Course Website: UBlearns will be used for all course grades, for e-mail, material distribution, etc.
- Class Meetings: Tues/Thurs, 11:00am – 12:20pm, Clemen 4
- Required Textbook: none
- Prerequisites: Familiarity with operations research and/or production systems models.
 Prior programming experience is not required.

Course Description: This course focuses on the development of the fundamental programming skills required by today’s operations research professionals. In particular, Python will be the programming language employed by this course. The course will begin with an overview of general Python syntax and usage, and will then focus on the use of Python to solve a variety of classic/common problems encountered in the operations research and production systems domains. Such problems include forecasting, machine scheduling, pricing, vehicle routing, and facility location (among others). Techniques for solving these problems by leveraging programming skills – including linear & non-linear optimization algorithms/heuristics and metaheuristics – will be a key component of the class.

Student Learning Outcomes:
Upon successfully completing this course, the student should have an appreciation for, and fundamental understanding of, the following concepts.

1) Programming/Python Fundamentals. Students should understand general concepts regarding the use of the Python programming language, including: How to run Python via the interactive shell or via scripts, data structures (e.g., lists and dictionaries), “for” and “while” loops, conditionals, functions, and file input/output (among other basic concepts). A homework assignment will be provided to assess student understanding of these concepts.

2) Data Collection and Visualization. One of the powerful functionalities of programming is the ability to obtain relevant data from online sources and to “see” this data. A variety of Python tools are available to this end. We will use the matplotlib package to visualize data (e.g., in scatter plots, histograms, box plots, etc.). Lessons on “scraping” data from the Web will also be provided. A homework assignment will be provided to assess student ability to obtain, manipulate, visualize, and interpret data.

3) Metaheuristics. Techniques such as simulated annealing, genetic algorithms, particle swarm optimization, and tabu search have been demonstrated to effectively solve very large and complex optimization problems. Students will be expected to implement a variety of metaheuristics in Python, with a homework assignment designed to assess student understanding of these implementations.

Updated 1/30/2017
4) **Domain-specific Problems.** The course will conclude by focusing on numerous specific problems encountered in operations research and production systems. For example:

a. **Manufacturing/Operations** – Forecasting, machine scheduling, lot sizing, etc.
b. **Sales** – Pricing, newsvendor with pricing, etc.
c. **Transportation** – Traveling salesman, facility location, shortest path, network flows, etc.

Again, homework assignments will be provided to assess student ability to tackle these problems.

Supplementary (Optional) Texts:

- Other sources of information will be provided throughout the semester.

Course Requirements/Evaluation:
Students will be evaluated based on the following:

- (50%) Homework assignments throughout the semester.
- (20%) Course Project, due near the end of the semester.
- (25%) Final Exam.
- (5%) Course attendance and participation.

Final course grades will be determined based on the following scale:

<table>
<thead>
<tr>
<th>Student’s Final Average</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 94.0 %</td>
<td>A High Distinction</td>
</tr>
<tr>
<td>≥ 90.0 %</td>
<td>A- High Distinction</td>
</tr>
<tr>
<td>≥ 87.0 %</td>
<td>B+ Superior</td>
</tr>
<tr>
<td>≥ 83.0 %</td>
<td>B Superior</td>
</tr>
<tr>
<td>≥ 80.0 %</td>
<td>B- Superior</td>
</tr>
<tr>
<td>≥ 77.0 %</td>
<td>C+ Average</td>
</tr>
<tr>
<td>≥ 73.0 %</td>
<td>C Average</td>
</tr>
<tr>
<td>≥ 70.0 %</td>
<td>C- Average</td>
</tr>
<tr>
<td>≥ 67.0 %</td>
<td>D+ Minimum Passing Grade</td>
</tr>
<tr>
<td>≥ 60.0 %</td>
<td>D Minimum Passing Grade</td>
</tr>
<tr>
<td>< 60.0 %</td>
<td>F Failure</td>
</tr>
</tbody>
</table>

Do not expect your grade to be “rounded up.”

Final Exam: The final exam will be closed-book and closed-notes, unless specified otherwise by the instructor.

Exam Makeup Policy: The final exam must be taken on the date scheduled. Unless there is a medical emergency, make-up exams will not be given. Proof will be required. Students with a valid excuse must notify the instructor prior to the date/time of the originally scheduled exam.

Make-up exams will take place at 7:00am on a date chosen by the instructor. An exam missed without a valid documented medical emergency excuse will result in a grade of zero (0) for that exam.
Homework: Homework assignments are designed to help you better understand the course material, and are aimed at helping you to understand the concepts required to complete the course project. Although you may discuss the assignments with your classmates, all work that you submit must be your own work. Homework assignments are due at the beginning of lecture on their due date. Late homework will not be accepted.

Course Project: Students will be expected to identify a relevant paper from an archived journal which features an algorithm/heuristic designed to solve a particular problem. This algorithm should be coded in Python and validated against the results published in the paper. A final report describing (1) the problem itself, (2) an overview of the solution procedure, (3) a description of how the test data were generating, (4) a summary of the various functions employed to execute the code, and (5) a “how-to” guide for running the Python code is expected. Details on the course project will be discussed in class.

Attendance: Attendance will be a component of your grade. You are allowed 2 absences without penalty. Each absence beyond this allowance will result in a 1% reduction in your overall course grade (with a maximum reduction of 5%). Tardiness equals absence; you are expected to arrive to class and be seated by 11:00am.

Quizzes: There will be no quizzes (unannounced or otherwise) in this course.

Professionalism: UB SEAS aims to enhance the education of the students in various aspects of professionalism, and to elevate the standards of behavior that are expected from students. The goals are two-fold: (1) to improve the working and learning environment within SEAS, and (2) to best equip students for employment after graduation.
- Students are expected to use professional style in all communications, including email, with course faculty and teaching assistants. This includes the use of salutations and closings (including clear identification of the author) and correct grammar.
- Students are expected to arrive prior to the start of class, and to remain for the duration of the class.
- Students are expected to refrain from the use of cell phones or other electronic devices unless they are clearly linked to class purposes (e.g., note-taking). Cell phones must remain off or muted.

Grade Disputes: If you disagree with the manner in which an assignment (homework or exam) was graded, you may request a re-evaluation of your assignment within two (2) weeks of the assignment due date. A re-evaluation request should consist of two (2) components:
- Page 1: A photocopy of your assignment.
- Page 2: A detailed explanation, not exceeding one-half page in length, describing why you believe your answer was correct.

The instructor will consider each case at the end of the term, but only if it appears that it may change your final grade. Obvious arithmetic errors will be corrected immediately.

Accessibility Resources: If you require classroom or testing accommodations due to a disability, please contact Accessibility Resources (AR), located in 25 Capen Hall. AR can be reached by phone at
 Academic Honesty and Integrity:
The University at Buffalo has a responsibility to promote academic honesty and integrity and to develop procedures to deal effectively with instances of academic dishonesty. Students are responsible for the honest completion and representation of their work, for appropriate citation of sources, and for respect for others’ academic endeavors. By placing their name on academic work, students certify the originality of all work not otherwise identified by appropriate acknowledgments. Please take the time to visit http://academicintegrity.buffalo.edu.

If you fail to meet the UB policy and the instructor’s policy for academic honesty and integrity, you will receive an ‘F’ in the course, and may be subject to suspension or expulsion from the university.

Violations include, but are not limited to:

- **Cheating on an examination, homework assignment, quiz, etc.** – This includes such things as copying from another’s paper, using unauthorized notes, calculators, etc., or giving or receiving unauthorized aid, such as trading examinations, whispering answers, passing notes, or using electronic devices to transmit or receive information.

- **Plagiarism** – This is using someone else's work without giving credit. It is, for example, using ideas, phrases, papers, laboratory reports, computer programs, data - copied directly or paraphrased - that you did not arrive at on your own. Sources include published works such as book, movies, web sites, and unpublished works such as other students' papers or material from a research service. In brief, representing someone else's work as your own is academically dishonest. The risk of plagiarism can be avoided in written work by clearly indicating, either in footnotes or in the paper itself, the source of any major or unique idea or wording that you did not arrive at on your own. Sources must be given regardless of whether the material is quoted directly or paraphrased.

 Copying any part of another student's assignment and putting your name on it is plagiarism.

- **Unauthorized collaboration** – This is working with or receiving help from others on graded assignments without the specific approval of the instructor. If in doubt, seek permission from the instructor before working with others. Students are encouraged to learn from one another: Form study groups and discuss assignments, but each assignment must be individual work unless specifically stated and turned in as a group assignment.

- You are encouraged to talk to one another about your assignments, however, all assignments must be done by the student(s) whose name is (are) on it!

- **Multiple submission** – This means using the same work to fulfill the academic requirements in more than one course. Prior permission of the instructors is essential.

Syllabus prepared by C. Murray

Revision History:

11/11/16 – Preliminary version of syllabus emailed to ISE students
1/31/17 – Official version of syllabus posted on UBlearns