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Motivated by recent technological advances in mobile robotics, this paper explores a novel approach for

warehouse order picking. In particular, this work considers two types of commercially available mobile

robots – one that can grasp items from a shelf (a picker) and another (a transporter) that can quickly

deliver all items from the pick list to the packing station. A new vehicle routing problem is defined which

seeks to minimize the time to deliver all items from a pick list to the packing station, a problem termed

the pick, place, and transport vehicle routing problem. A mixed integer linear programming formulation

is developed to answer three related research questions. First, what combination of picker and transport

robots is required to obtain performance exceeding traditional human-based picking operations? Second,

how should the composition of the robot fleet be altered to a↵ect the greatest performance improvements?

Finally, what are the impacts of warehouse layout designs when coordinated mobile robots are deployed?

An extensive numerical analysis reveals that, (1) increasing the number of cross aisles decreases system

performance; (2) centrally located packing stations improve system performance; and (3) the average

distance from each pick location to the packing station and the average distance between pick locations are

e↵ective metrics for identifying specific fleet modifications that are likely to yield system improvements.

Keywords: automated guided vehicle; facility layout; facility planning; robot applications; vehicle

routing; warehouse design; warehousing systems

1. Introduction

It is estimated that order-picking operations can account for roughly 65% of the total operating
cost, and 60% of all labor activities, in a warehouse (Ho, Su, and Shi 2008). Recent technological
advances in mobile robotics promise to reduce these costs. For example, the recently-unveiled
“Fetch” and “Freight” robots from Fetch Robotics, Inc., pictured in Figure 1 and detailed in Wise
et al. (2016), have been marketed to the warehousing industry to improve order picking operations.
Both robots are mobile and feature onboard laser scanners to detect and avoid obstacles. The Fetch
robot is equipped with a camera system to identify the items to be picked and a gripper attachment
for retrieving items from a storage rack. The smaller Freight robot is designed to transport items
placed within a removable tote to a packing station where the items are prepared for shipping.
Freight may be used in conjunction with Fetch, with Fetch placing items into Freight for transport
in a pick-and-place process. Alternatively, Freight may be programmed to follow a human picker
in a follow-pick system, allowing the human picker to stay within the warehouse while the faster
robot transporter moves items to the packing station (in constrast to a traditional human-only
system in which the human must also transport the picked items).

This paper discusses the potential timesavings that new robotics technologies may o↵er in order-
picking operations. In particular, we consider the problem of collecting a pick list of items. Each
item on the list occupies a space in the warehouse (a picking location), defined by specific two-
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(a) Fetch and Freight. (b) Fetch’s robot hand for order retrieval

Figure 1.: Fetch and Freight (source: fetchrobotics.com).

dimensional coordinates and a height on the storage rack. A “picker” robot (e.g., Fetch) retrieves
one item at a time, placing each item into a “transport” robot (e.g., Freight). This hando↵ is
performed at the location where the item was retrieved. The transport robots deliver the items
to a single packing station located within the warehouse. The objective is to minimize the time
required to transport all items on the pick list from the warehouse to the packing station. We
term this problem the pick, place, and transport vehicle routing problem (PPT-VRP). While this
problem was inspired by Fetch and Freight, it is not specific to these particular robots; Locus
Robitics (2018) and 6 River Systems (2018) sell similar robots for automated warehouses.

The availability of mobile picker and transport robots prompts a number of interesting research
questions in the context of this order-picking problem. For example, what combination of picker
and transport robots is required to obtain performance exceeding human-based picking operations,
where human workers pick items and return all items described in the pick list to the packing
station manually? Furthermore, how does this answer change if the robots have a constrained
payload capacity (i.e., less than the size of the pick list)? To help answer these questions, a mixed
integer linear programming (MILP) formulation of the PPT-VRP is proposed. Solutions to this
problem describe the sequence of items to be collected by picker robots and establish the timing
coordination between picker and transport robots.

This research also explores the benefits of a hybrid system in which humans are tasked to retrieve
(pick) items while mobile robots are employed to transport these items to the packing station. Such
a “follow-pick” system acknowledges that humans are (at least presently) more adept at identifying
and grasping items from a storage shelf. It also leverages the faster travel speeds for the robotic
transport unit. The proposed PPT-VRP formulation may be employed to determine the optimal
number of transport robots to pair with a given number of human pickers.

Finally, this research examines the relationships between warehouse design and mobile robot
picking operations. The impacts of the number of cross- and picking-aisles, as well as the location
of packing stations within the warehouse, are explored. This paper also investigates the relative
impacts of altering the mix and functionality of a fleet of pick-and-transport robots. This analysis
provides insight into whether it is more beneficial to add an extra picker, add another transporter,
increase the carrying capacity of a transporter, or increase the retrieval speed of a picker.

The remainder of this paper is organized as follows. Related literature is discussed in Section 2,
followed in Section 3 by a formal mathematical programming model of the problem. This model
is extended to consider combinations of robots and human pickers, as well as an environment in
which only human pickers are available. We demonstrate empirically, via an extensive numerical
analysis in Section 4, the impacts of various warehouse layouts and highlight the relative benefits
associated with modifying the robot fleet’s composition and capabilities. Finally, a summary and
an overview of future research opportunities are provided in Section 5.
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2. Related literature

There is a vast body of warehouse operation and layout design research, reviews of which may
be found in de Koster, Le-Duc, and Roodbergen (2007), and Gu, Goetschalckx, and McGinnis
(2007, 2010). One category of layout research involves unit-load warehousing, where large unit
sizes (e.g., pallets) limit each picker to transporting one item at a time. Pohl, Meller, and Gue
(2009) investigated optimization of warehouse layout structures with perpendicular aisles under a
dual-command operation, where workers re-stock one item and retrieve another item in a route. Gue
and Meller (2009) introduced novel non-traditional warehouse designs with diagonal cross aisles
and non-parallel picking aisles. Ozturkoglu, Gue, and Meller (2012) proved that the non-traditional
single cross aisle Chevron design outperforms others with more cross aisles. Other considerations
of non-traditional layouts include turnover-based storage policies (Pohl, Meller, and Gue 2011),
and multiple depots (Gue, Ivanovia, and Meller 2012; Ozturkoglu, Gue, and Meller 2014). These
works seek the minimization of the expected traveling distance (or time) by changing warehouse
layouts or storage policies. Order batching and detailed picker routing were not considered, as the
focus was on unit-loads.

Another category of layout research involves batch picking, in which each picker may retrieve
several items in a route. Roodbergen and Vis (2006) investigated the impact of warehouse layout
parameters and routing policies on the expected traveling distances of picking tours. Parikh and
Meller (2010) developed a throughput model that incorporates the vertical travel dimension for
warehouses with varying lengths and heights of storage aisles. Thomas and Meller (2015) discussed
the e↵ects of various layout aspects upon labor hours. Roodbergen, Vis, and Taylor (2015) pro-
vided case studies for the determination of the layout parameters that reduce the average travel
distance for order picking. These layout parameters included storage unit assignments, the number
of cross aisles, warehouse shape, and aisle lengths. Similarly, a simulation-based statistical analysis
of certain warehouse layout parameters was conducted by Shqair, Altarazi, and Al-Shihabi (2014).

As stated in Gu, Goetschalckx, and McGinnis (2007), proper order batching can also improve the
e�ciency of order retrieval. Warehouse order batching research focuses on splitting a set of orders
(a pick list) into batches to ensure that all batches can be retrieved within a time window. Thus,
the batch size is determined based on the required completion time for each batch (Petersen 2000;
de Koster, Le-Duc, and Roodbergen 2007). Assuming given routing, heuristics for order batching
problems have been studied under deterministic (c.f., Chen and Wu (2005); Gademann and Velde
(2001, 2005); Hsu, Chen, and Chen (2005); Henn (2012); Pan, Shih, and Wu (2015)) and stochastic
demands (c.f., Chew and Tang (1999); Le-Duc and de Koster (2007); Nieuwenhuyse and de Koster
(2009); Henn (2012)). While these research works have provided e�cient methodologies for order
batching, they require known routes and consider given layout configurations.

Routing methodologies for order picking also play an important role in improving warehouse
e�ciency. The first model for optimal picker routing was proposed by Ratli↵ and Rosenthal (1983),
which employed a traveling salesman problem (TSP) to minimize order retrieval time. Improved
routing models were proposed by Scholz et al. (2016). Due to the computational complexity of
this problem, a number of routing heuristics for order picking have been studied for problems of
practical size (c.f., de Koster and Poort (1998); Chew and Tang (1999); Roodbergen and de Koster
(2001b,a); Hwang, Oh, and Lee (2004); Theys et al. (2010)).

AGV-based warehousing systems, such as implementations of autonomous vehicle based storage
and retrieval system (AVS/RS) for high-density storage warehouses, have received increasing inter-
est. For example, Ferrara, Gebennini, and Grassi (2014) studied warehouses with pallet shuttles and
laser guided vehicles which coordinate with each other for item passing at the intersections of aisles.
Queueing models were applied to estimate the order retrieval time when adjusting batch sizes of
fleets. Other queueing analytic studies have addressed dwell-points (c.f., Kuo, Krishnamurthy, and
Malmborg (2007); Roy et al. (2012, 2015)), aisle locations (c.f., Roy et al. (2012, 2015)), and batch
sizes of fleets (c.f., Fukunari and Malmborg (2009)). Simulation models were presented by Ekren
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et al. (2010) to analyze the e↵ects of system operating policies and depot locations for AVS/RS.
Saidi-Mehrabad et al. (2015) proposed a congestion free vehicle routing problem associated with
job shop scheduling problems for AGVs transporting items from a warehouse to the manufac-
turing system via grid-based paths. Unlike human-based warehousing or the proposed PPT-VRP,
AGV-based warehousing research assumes autonomous vehicles traveling along only designated rail
guide-paths, which results in either warehouse zoning strategies or constrained routing policies.

In contrast to the Fetch & Freight robots, which retrieve individual items from the warehouse,
Amazon’s Kiva System robots transport entire racks to the packing area (e.g., Tam (2014); Wohlsen
(2014)). Recent research on such “parts-to-picker” robotic environments includes Boysen, Briskorn,
and Emde (2017a), Boysen, Briskorn, and Emde (2017b), Lamballais, Roy, and Koster (2017), and
Bozer and Aldarondo (2018).

In a more general context, variants of the vehicle routing problem (VRP) are also closely re-
lated to the problem at hand. Of particular relevance is the VRP with multiple synchronization
constraints (VRPMS), a review of which is provided by Drexl (2012) and e�cient branch-and-cut
algorithms are proposed by Drexl (2014). The VRPMS considers heterogeneous vehicles that must
be coordinated to perform tasks such as load transfers or moving of truck trailers. The PPT-VRP
extends the VRPMS to include queueing of delivery activities and vehicle recharging.

This paper aims to contribute to the literature in two key areas. First, the PPT-VRP represents
a novel optimization problem for the coordinated routing of two types of heterogeneous vehicles
(e.g., Fetches and Freights). This di↵ers from existing routing methodologies for warehouse order
retrieval, which consider routing for only individual pickers. It also removes restrictions found in
AVS/RS problems in which vehicles are constrained to rail guide-paths or to particular zones.
Second, this paper explores layout design guidelines for warehouses employing picker robots or
combinations of human pickers and robot transporters. The impacts of warehouse layout parameters
(e.g., the number of cross aisles, the number of picking aisles, and depot locations) are examined
for di↵erent vehicle parameters (e.g., robot quantities, speeds, and capacities).

3. Problem definition and formulations

The PPT-VRP may be defined as follows. A pick list (collection) of items, denoted by the set
I = {1, . . . , |I|}, must be retrieved from the warehouse and delivered to a packing station (depot).
The pick list, which has been pre-defined, may contain items from multiple customer orders. The
objective of the PPT-VRP is to determine routes for all available picker and transporter vehicles
such that the latest time at which all items from the pick list I are dropped o↵ at the packing
station; that is, to minimize the makespan.

Two types of specialized vehicles (mobile robots) are available; P represents the set of “picker”
robots and D represents the set of “delivery” (or “transport”) robots. The entire fleet of vehicles
is thus given by the set V = P [D.

Vehicle “blocking” in aisles is not considered in this study. This is partially for the sake of
enabling a tractable mathematical model. Although aisle congestion has been considered in the
warehousing literature, it is typically under relatively restrictive conditions, such as S-shape routes
in warehouses with uni-directional aisles (c.f., Gue, Meller, and Skufca (2006); Mowrey and Parikh
(2014)), vehicles with designated or closed-loop paths (c.f., Ferrara, Gebennini, and Grassi (2014);
Hong (2014); Hong, Johnson, and Peters (2012); Roy et al. (2015)). Furthermore, the aisle conges-
tion research considers single picker types (c.f., Gue, Meller, and Skufca (2006); Hong, Johnson,
and Peters (2012); Mowrey and Parikh (2014); Saidi-Mehrabad et al. (2015)), often with limited
numbers (c.f., Chen et al. (2013); Hong (2014)). By contrast, this study considers a heterogeneous
fleet of picker and transport robots that are free to travel along any paths. This flexibility leads to
significantly more complicated vehicle routing formulations, even without provisions for conflict-
free routing. However, from a practical perspective, the robots motivating this research are of a
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scale such that the typical aisle width can accommodate three of these robots in parallel. More
details are provided in the numerical study in Section 4.1.

Each robot v 2 V may have a unique payload capacity, given by ŵv. The initial payload carried by
a given robot is denoted by w

0
v, while the weight of item i 2 I is given by w̄i. Each battery-powered

vehicle v 2 V has an initial charge of 0  c

0
v  1, which represents the remaining percentage

of battery life. Batteries are discharged at the rate of 0  dv  1 percent per unit time, which
is assumed to be independent of payload. When a vehicle visits the depot, charging stations will
re-charge batteries at a rate of 0  rv  1 percent per unit time. It is assumed that a su�cient
number of charging stations are available, such that vehicles do not wait for charging access. Travel
time from the packing station to the chargers is assumed to be negligible.

Three types of service time are separately identified. First, the time required for picker robot
v 2 P to grasp item i 2 I from its location on the stocking shelf is denoted by s

pick
v,i . This accounts

for di↵erences in robot capabilities as well as additional time required to grasp items located far
(vertically) from the robot’s default pose. Similarly, let splacev,i represent the time required for picker
robot v 2 P to place item i 2 I into a delivery robot. Finally, the time required for all items
transported by delivery robot v 2 D to be o✏oaded from the robot at the depot is given by s

drop
v .

We assume that this time is independent of the number of items held by the robot, as the person
collecting these items at the depot is expected to simply replace the used tote with an empty
one. As delivery vehicles arrive at the depot they form a queue while waiting for their totes to be
replaced. Table 1 summarizes the parameter notations of the PPT-VRP.

Table 1.: Summary of parameter notation.

I Set of items comprising the pick list; I = {1, . . . , |I|}.
P Set of pickers.
D Set of transporters; P \D = ?.
V Set of all vehicles in the fleet; V = P [D.
�0

v = 0 Initial location of vehicle v 2 V .
�⇤

v Set of depot replicas for vehicle v 2 V , where �⇤
v1
\�⇤

v2
= ? for all v1 6= v2.

�+
v Set of nodes to which vehicle v 2 V may travel, such that �+

v ✓ {I [�⇤
v}.

��
v,j Set of nodes that could be visited right after visiting node j, where ��

v,j2I ✓
{�0

v [ I\j [�⇤
v}, and ��

v,j2�⇤
v
✓ {�0

v [ I [max{�⇤
v < j}} 8 v 2 V .

N Set of nodes in the network; N = 0 [ I [v2V �⇤
v.

0  c

0
v  1 Remaining percentage of battery life for vehicle v 2 V .

0  dv  1 Discharging rate for vehicle v 2 V .
0  rv  1 Re-charging rate for vehicle v 2 V .
Fv Speed of vehicle v 2 V .

s

pick
v,i Time required for picker v 2 P to grasp item i 2 I from its storage location.

s

place
v,i Time required for picker v 2 P to place item i 2 I into a transporter.

s

drop
v Time required for transporter v 2 D to drop o↵ a tote of items at the depot.
⌧v,i,j Time required for vehicle v 2 V to travel to node j 2 �+

v from node i 2 ��
v,j .

w

0
v Initial payload capacity of vehicle v 2 V .

ŵv Overall payload capacity of vehicle v 2 V .
w̄i Weight of item i 2 I.

3.1 Representing the network structure

An underlying network structure facilitates the characterization of vehicle movement. This network
includes three types of nodes that represent (1) the initial location of each vehicle, (2) the locations
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of items to be retrieved from the warehouse, and (3) the location of the depot. We let �0
v = 0

represent the initial location of vehicle v 2 V . Although this node’s label equals zero for all vehicles,
it is not a requirement that each vehicle actually begin service at the same physical location; this
labeling convention simply serves to reduce the number of node numbers. Next, each item i 2 I

defines a node representing the location of the item. Finally, multiple nodes are utilized to represent
the single packing station (depot). Although there is one physical packing station, our network
representation requires the creation of multiple replicas (copies) of this station. Each replica is given
a unique number, and is associated with exactly one robot. These replicas are required because
each individual robot may visit the packing station multiple times; delivery (Freight) robots may
visit multiple times to deliver items or to recharge, while picker (Fetch) robots will only visit the
packing station to recharge. Each time a robot visits the packing station it will be assigned to a
di↵erent replica of the station. Specifically, we define �⇤

v to be the set of packing station replicas
for vehicle v 2 V . Note that �⇤

v1
\�⇤

v2
= ? for all v1 6= v2 (i.e., all of these nodes are unique). A

pre-processing step is required to determine the number of replicas that should be created for each
robot. Thus, the entire set of nodes is given by N = 0 [ I [v2V �⇤

v.
Additional notation characterizes the permissable travel movements of the robots. We define

�+
v to be the set of nodes to which vehicle v 2 V may travel, such that �+

v ✓ {I [ �⇤
v}. Note

that �0
v /2 �+

v because a vehicle can never return to its initial location (vehicles may only leave
the initial location). Furthermore, if an item associated with node i 2 I is too heavy for vehicle
v, then i /2 �+

v . Next, given some node j 2 �+
v for a particular vehicle v 2 V , ��

v,j represents
the set of nodes that could be visited immediately prior to node j. Thus, a vehicle may travel
directly from node i 2 ��

v,j to node j 2 �+
v . If j 2 I (i.e., if j represents the location of an item),

then ��
v,j contains �0

v (the vehicle’s initial location), I \ j (all other item locations), and �⇤
v (all

packing station replicas). However, if j 2 �⇤
v (i.e., if j is one of the packing station replicas), then

��
v,j contains �0

v (this would mean that the vehicle travels directly from its initial location to a
packing station), I (all item locations), and max{�⇤

v < j} (the largest replica node for vehicle v

that is smaller than replica node j). Under this construction, a robot may move from one of its
replica packing stations to another. However, it may only move to the next larger replica node. If
a vehicle moves from replica to replica in an optimal solution, this is indicative of excess replicas
being defined for this vehicle.

An example of the network structure is shown in Figure 2. There is one picker (v1 2 P ) and
one transporter (v2 2 T ) which are to retrieve three items (I = {1, 2, 3}). Two depot replicas have
been pre-defined for each vehicle (�⇤

v1
= {4, 5} and �⇤

v2
= {6, 7}). Thus, �+

v1
= {1, 2, 3, 4, 5} and

�+
v2

= {1, 2, 3, 6, 7} represent all of the nodes to which vehicles v1 and v2 may travel, respectively. If
a checkmark or the vehicle’s number appears in a column of the table in 2b, the node corresponding
to that column is an element of �+

v for some vehicle v. For a given destination node, j, the rows of
this column indicate if the origin node i is in the set ��

v,j . Using node 3 as an example destination
node, for vehicle v1, the set of nodes that may be visited immediately prior to node 3 includes 0
(the origin), 1, 2 (other item storage locations), and 4 (any of the depot replicas for v1 except the
last replica). That is, ��

v1,3 = {0, 1, 2, 4}. Similarly, ��
v2,3 = {0, 1, 2, 6}.

We define ⌧v,i,j to be the time required for vehicle v 2 V to travel to node j 2 �+
v from node

i 2 ��
v,j . This parameter may include any additional travel time required by vehicles when turning

corners. Note that �0
v = 0 for all v 2 V , but the travel time from �0

v to any location j, ⌧v,0,j ,
will incorporate the actual (potentially unique) initial location of vehicle v. Thus, ⌧v1,0,j does not
necessarily equal ⌧v2,0,j for all v1, v2 2 V .

3.2 Decision variables

A variety of decision variables are employed in this coordinated vehicle routing problem. First,
binary decision variable xv,i,j equals one if picker vehicle v 2 P travels from node i 2 ��

v,j to node
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Depot

�⇤
v1 = {4, 5}

�⇤
v2 = {6, 7}

Picker, v1

�0
v1 = 0

Transporter, v2

�0
v2 = 0

(a) An example warehouse layout showing three pick

locations (I = {1, 2, 3}), a picker and a transporter.
Both the picker (v1) and transporter (v2) start at
node 0, although the vehicles are in di↵erent physi-

cal locations.

To (j 2 �+
v )

I �⇤
v1 �⇤

v2
From (i 2 ��

v,j) 1 2 3 4 5 6 7

�0
v1 ,�

0
v2 0 X X X v1 v2

I
1 X X v1 v1 v2 v2
2 X X v1 v1 v2 v2
3 X X v1 v1 v2 v2

�⇤
v1

4 v1 v1 v1 v1
5

�⇤
v2

6 v2 v2 v2 v2
7

(b) From/to combinations that are valid for both vehicles are

indicated by a X. A particular vehicle number indicates that

only that vehicle is allowed to travel from one node to an-
other. For example, picker vehicle v1 cannot travel to either of

the depot replicas associated with vehicle v2 (nodes 6 and 7).

Vehicle v1 may also not depart from node 5; only two depot
replicas were created for this vehicle (nodes 4 and 5), and the

last replica is terminal.

Figure 2.: An example network structure for a system with two vehicles and three pick locations.

j 2 �+
v . For delivery vehicle v 2 D, binary decision variable yv,i,j is similarly defined.

Coordination among the vehicles is a key component of this problem. It is assumed that items
retrieved by a picker robot must be placed into a transport robot before the picker can proceed to
the next item. Thus, an item hand-o↵ can only occur at the location where the item was retrieved.
Continuous decision variable tv,j � 0 determines the time at which vehicle v 2 V arrives at node
j 2 �+

v and is ready to conduct an activity at that node. For picker vehicles (v 2 P ), this time
represents the earliest possible arrival to node j. For delivery vehicles (v 2 D) receiving an item
from a picker, the definition is nuanced. Here, tv,j represents the time at which the delivery vehicle
may begin to receive item j. That is, the delivery vehicle is assumed to arrive at node j 2 I

no earlier than the time at which the picker has actually retrieved the item. The binary decision
variable av1,v2,j establishes the pairing between a picker robot and a delivery robot at a particular
item location, such that av1,v2,j = 1 if v1 2 P and v2 2 D are assigned to retrieve item j 2 I.

Although picker and delivery vehicles are capacity constrained, only delivery vehicles may move
while carrying an item. Continuous decision variable wv,i,j � 0 represents the total weight of items
carried by delivery vehicle v 2 D after leaving node j, having traveled from node i. Thus, if v
travels from i to j, wv,i,j will include all weight loaded through location i plus the weight added at
location j. Payload capacity limitations for picker vehicles are addressed in the definition of �+

v ,
which prohibits a picker from visiting a location associated with an item that exceeds its capacity.

Three types of decision variables are associated with activities that occur at the depot. First,
delivery vehicles form a queue when arriving at the packing station as they wait for their totes
to be emptied. To monitor the order in which these vehicles arrive at the depot, binary decision
variable qj1,j2 = 1 if vehicle v1 2 D arrives at its depot replica j1 2 �⇤

v1
before v2 arrives at its depot

replica j2 2 �⇤
v2
. The battery-powered vehicles require periodic re-charging, which is performed at

stations adjacent to the depot. The charge remaining on vehicle v 2 V when it arrives at depot
replica j 2 �⇤

v [�0
v is given by continuous decision variable 0  cv,j  1. Note that the value of

cv,�0
v
is hard-coded to equal c0v at the initial location. Third, gv,j � 0 represents the duration that

vehicle v 2 V spends charging at depot replica j 2 �⇤
v [�0

v.
Finally, the makespan, which is to be minimized, is represented by continuous decision variable

m � 0. Table 2 summarizes the decision variable notations of the PPT-VRP.
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Table 2.: Summary of decision variable notation.

av1,v2,i 2 {0, 1} av1,v2,j = 1 if v1 2 P and v2 2 D are assigned to retrieve item j 2 I.
0  cv,j  1 The charge remaining on vehicle v 2 V when it arrives at depot

replica j 2 �⇤
v [�0

v.
gv,j � 0 The duration that vehicle v 2 V spends charging at depot replica

j 2 �⇤
v [�0

v.
m � 0 The required makespan to retrieve a pick list of items.
qj1,j2 2 {0, 1} qj1,j2 = 1 if vehicle v1 2 D arrives at its depot replica j1 2 �⇤

v1
before

v2 arrives at its depot replica j2 2 �⇤
v2
.

tv,j � 0 The arrival time at node j 2 �+
v for vehicle v 2 V .

wv,i,j � 0 The total weight of items carried by transporter v 2 D after leaving
node j, having traveled from node i.

xv,i,j , yv,i,j 2 {0, 1} xv,i,j = 1 (yv,i,j = 1) if picker v 2 P (transporter v 2 D) travels from
node i 2 ��

v,j to node j 2 �+
v .

3.3 MILP formulation

The MILP formulation for the PPT-VRP is as follows.

Min m (1)

s.t. m � tv,j 8 v 2 D, j 2 �⇤
v, (2)

X

v2P

X

i2��
v,j

xv,i,j = 1 8 j 2 I, (3)

X

v2D

X

i2��
v,j

yv,i,j = 1 8 j 2 I, (4)

2av1,v2,j 
X

i2��
v1,j

xv1,i,j +
X

i2��
v2,j

yv2,i,j 8 j 2 I, v1 2 P, v2 2 D, (5)

av1,v2,j + 1 �
X

i2��
v1,j

xv1,i,j +
X

i2��
v2,j

yv2,i,j 8 j 2 I, v1 2 P, v2 2 D, (6)

X

v12P

X

v22D
av1,v2,j = 1 8 j 2 I, (7)

tv2,j � tv1,j + s

pick
v1,j

�M(1� av1,v2,j) 8 v1 2 P, v2 2 D, j 2 I, (8)

tv1,j � tv2,i + s

place
v1,i

+ ⌧v1,i,j �M(2� av1,v2,i � xv1,i,j)

8 v1 2 P, v2 2 D, i 2 I, j 2 {�+
v1

: i 2 ��
v1,j

}, (9)
X

j2{�+
v :�0

v2�
�
v,j}

xv,�0
v,j = 1 8 v 2 P, (10)

X

i2��
v,j

xv,i,j = 1 8 v 2 P, j 2 �⇤
v, (11)

X

i2��
v,j

xv,i,j =
X

k2{�+
v :j2��

v,k}

xv,j,k 8 v 2 P, j 2 �+
v , (12)

8
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X

i2��
v,j

xv,i,j  1 8 v 2 P, j 2 �+
v , (13)

X

j2{�+
v :i2��

v,j}

xv,i,j  1 8 v 2 P, i 2 {�+
v [�0

v}, (14)

X

j2{�+
v :�0

v2�
�
v,j}

yv,�0
v,j = 1 8 v 2 D, (15)

X

i2��
v,j

yv,i,j = 1 8 v 2 D, j 2 �⇤
v, (16)

X

i2��
v,j

yv,i,j =
X

k2{�+
v :j2��

v,k}

yv,j,k 8 v 2 D, j 2 �+
v , (17)

X

i2��
v,j

yv,i,j  1 8 v 2 D, j 2 �+
v , (18)

X

j2{�+
v :i2��

v,j}

yv,i,j  1 8 v 2 D, i 2 {�+
v [�0

v}, (19)

tv,0 = 0 8 v 2 V, (20)

tv,j � tv,i +
⇣

s

pick
v,i + s

place
v,i + ⌧v,i,j

⌘

xv,i,j �M(1� xv,i,j)

8 v 2 P, j 2 �+
v , i 2 {��

v,j \ I}, (21)

tv,j � tv,i +
X

v02P
s

place
v0,i av0,v,i + ⌧v,i,j �M(1� yv,i,j) 8 v 2 D, j 2 �+

v , i 2 {��
v,j \ I}, (22)

tv,j � tv,i + gv,i + ⌧v,i,jxv,i,j �M(1� xv,i,j)

8 v 2 P, j 2 �+
v , i 2 {�⇤

v [ 0 : i 2 ��
v,j}, (23)

tv,j � tv,i + gv,i + ⌧v,i,jyv,i,j �M(1� yv,i,j)

8 v 2 D, j 2 �+
v , i 2 {�⇤

v [ 0 : i 2 ��
v,j}, (24)

tv,j2 � tv,j1 + s

drop
v

0

B

@

X

i2{��
v,j1

\(�⇤
v\j2)}

yv,i,j1

1

C

A

+ ⌧v,j1,j2yv,j1,j2 �M(1� yv,j1,j2)

8 v 2 D, j1 2 {�⇤
v \max{�⇤

v}}, j2 2 {�+
v \ j1}, (25)

wv,i,j  ŵvyv,i,j 8 v 2 D, j 2 �+
v , i 2 ��

v,j , (26)

wv,�0
v,j = (w0

v + w̄j)yv,�0
v,j 8 v 2 D, j 2 {I \�+

v }, (27)

wv,i,j = w̄jyv,i,j 8 v 2 D, j 2 I, i 2 {��
v,j \�⇤

v}, (28)

wv,j,k �
X

i2��
v,j

i 6=k

wv,i,j + w̄kyv,j,k � ŵv(1� yv,j,k) 8 v 2 D, k 2 I, j 2 {I : k 6= j}, (29)

gv,0 = 0 8 v 2 V, (30)

cv,�0
v
= c

0
v 8 v 2 V, (31)

cv,j  cv,i + rvgv,i � dv (tv,j � (tv,i + gv,i))

8 v 2 V, j 2 �⇤
v, i = {�⇤

v [�0
v : i 2 ��

v,j}, (32)
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tv2,j2 � tv1,j1 + s

drop
v1

0

B

@

X

i2{��
v1,j1

\�⇤
v1

}

yv1,i,j1

1

C

A

�M(1� qj1,j2)

8 v1 2 D, v2 2 {D \ v1}, j1 2 �⇤
v1
, j2 2 �⇤

v2
, (33)

qj1,j2 + qj2,j1 = 1 8 v1 2 D, v2 2 {D : v2 > v1}, j1 2 �⇤
v1
, j2 2 �⇤

v2
, (34)

qj1,j2 = 1 8 v 2 D, j1 2 �⇤
v, j2 2 {�⇤

v : j2 > j1}, (35)

m � 0, (36)

qj1,j2 2 {0, 1} 8 v1 2 D, v2 2 {D \ v1}, j1 2 �⇤
v1
, j2 2 �⇤

v2
, (37)

tv,j � 0 8 v 2 V, j 2 �+
v , (38)

wv,i,j � 0 8 v 2 D, j 2 �+
v , i 2 ��

v,j , (39)

yv,i,j 2 {0, 1} 8 v 2 D, j 2 �+
v , i 2 ��

v,j , (40)

xv,i,j 2 {0, 1} 8 v 2 P, j 2 �+
v , i 2 ��

v,j , (41)

av1,v2,j 2 {0, 1} 8 v1 2 P, v2 2 D, j 2 I, (42)

0  cv,j  1 8 v 2 V, j 2 {�⇤
v [�0

v}, (43)

0  gv,j 8 v 2 V, j 2 �⇤
v. (44)

The objective function (1) seeks to minimize the latest time at which all items are delivered to
the packing station (depot), as limited by Constraint (2). Constraints (3) and (4) ensure that each
item is retrieved by a picker vehicle and placed into a delivery vehicle. Each item location must be
visited by both a picker and a transporter.

Constraints (5)–(9) coordinate the picker and delivery vehicles at each item location, where
Constraints (5), (6), and (7) set the appropriate value of av1,v2,j to pair a picker with a transporter,
while Constraints (8) and (9) establish the timing of this coordination. Conversely, Constraint
(6) sets av1,v2,j = 1 if v1 and v2 meet at j. Constraint (7) ensures that each item is associated
with exactly one picker/transporter pair. Next, Constraint (8) specifies that a picker may retrieve
an item before a transporter arrives, but the transporter is not deemed to arrive at this location
until the picker has completed the picking operation. Constraint (9) prohibits a picker vehicle from
moving to the next location, j, until the placement of an item at i is completed.

The value of M , which represents a su�ciently large number, corresponds to an upper bound
on the makespan. One valid bound may be calculated as the maximum cumulative time required
to visit all nodes by a single vehicle, such that M = max{⌧upperv + ⌧

charging
v }, where

⌧

upper
v = ⌧v,�0

v,depot +
X

j2I
2⌧v,depot,j +max

8

<

:

X

j2I

⇣

s

pick
v0,j + s

place
v0,j

⌘

9

=

;

+ |I|max
n

s

drop
v00

o

for all v 2 V, v

0 2 P, and v

00 2 D. Here, ⌧upperv represents the time for vehicle v 2 V to travel
from its initial location to the depot, then to make round-trip visits from the depot to each picking
location, plus the maximum service time for the pick, place, and drop activities. The value of
⌧

charging
v , which represents the required charging time for vehicle v to travel a route of duration
⌧

upper
v , is given by

⌧

charging
v =

max {0, (dv⌧upperv � c

0
v)}

rv
.

Valid vehicle routes are established by Constraints (10)–(14). Constraint (10) requires each picker
to depart from its initial location, while Constraint (11) ensures that each picker tour ends at a

10
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depot replica. Conservation of flow for picker vehicles is guaranteed by Constraint (12). Constraints
(13) and (14) prohibit pickers from visiting or leaving any node more than once, respectively.
Constraints (15)–(19) are analogous to Constraints (10)–(14) for delivery vehicles.

Constraints (20)–(25) incorporate travel time into the routing process, where Constraint (20)
initializes the start time for all vehicles to be zero. Constraint (21) states that, if a picker travels
from i to j (where i is associated with picking up an item), then the arrival time to j cannot be
before the arrival time to i plus the total service time at i plus the travel time from i to j. Similarly
for delivery vehicles, Constraint (22) guarantees that a transporter’s arrival time to j cannot be
earlier than the summation of the arrival time to i, the placement service time performed by the
partnering picker at i, and the travel time from i to j. Constraints (23) and (24) ensure valid
start times when a picker or transporter leave a depot replica, respectively, while Constraint (25)
captures the drop-o↵ time required before visiting subsequent locations.

Payload limitations for delivery vehicles are addressed by Constraints (26)–(29). In (26), the
total weight carried by delivery vehicle v 2 D after visiting node j cannot exceed the capacity
limit. When a transporter leaves its initial location (�0

v) and travels to some location j, the total
carried weight equals the initial weight plus the quantity picked up at location j, as in Constraint
(27). Constraint (28) determines the payload weight carried by transporter v when picking up the
first item after leaving a depot replica. Constraint (29) forces the payload weight to be at least as
large as the summation of weight when v leaves j, and the weight loaded at k.

Constraint (30) initializes the charging time at each vehicle’s initial location to be zero. Similarly,
(31) establishes the initial charge of vehicle v when leaving �0

v. The left-hand side of (32) represents
the charge of vehicle v when arriving at depot j. This charge cannot exceed the charge when it
arrived at depot i (note that depot replicas are ordered such that i precedes j) plus the additional
charge acquired while at station i minus the discharge that occurs between i and j.

Constraints (33), (34), and (35) address queueing of transport vehicles at the depot. Constraint
(33) establishes the e↵ective arrival time of a transporter at the depot, taking into account the
arrival order of all transport vehicles. Decision variable qj1,j2 = 1 if v1 arrives before v2, where j1

is the depot replica associated with v1. The time that v2 may begin service at the depot must not
be before v1 has completed. Constraint (34) considers two depot replica nodes that are used by
di↵erent transport vehicles, ensuring that exactly one of the replica nodes is used before the other.
Similarly, Constraint (35) hard-codes the values of qj1,j2 for a particular transport vehicle to force
a given vehicle to utilize its replica nodes in order. The model concludes with decision variable
definitions in Constraints (36)–(44).

3.4 Modifying the model to account for humans

While the above PPT-VRP model was formulated specifically for picker and transport robots, it is
straightforward to modify it to address combinations of human pickers and robotic delivery vehicles.
For these mixed modes, we consider only the case of a human performing picking operations and
a delivery robot transporting picked items to the depot. Given that humans are currently more
adept at identifying and picking items from a shelf, and that delivery robots are likely faster at
moving material, it would seem impractical to replace the delivery robot with a human. Thus, to
replace the picker robot with a human (i.e., to model a follow-pick system), we consider the set
P to represent all human pickers (rather than picker robots). It is then su�cient to modify the

parameter values describing travel time (⌧v,i,j), payload capacity (ŵv), picking time (spickv,i ), and

placing time (splacev,i ) for all v 2 P . Constraints (30) – (32), which govern battery consumption, may
be safely ignored for all v 2 P .

For the purposes of comparing the robot-only and hybrid human-robot systems, it is also bene-
ficial to determine the optimal routing assignments associated with traditional human-based order
picking. In this scheme, each human worker moves through the warehouse with a cart and performs

11
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both picking and transporting operations. As in the PPT-VRP, the routing constraints prohibit
any item location from being visited by more than one picker. Additionally, we assume that a
queue may still be formed at the packing station. However, no charging time is required for the
human. To re-use the framework of the PPT-VRP model, we let V = P = D be redefined as the
set of human pickers, and let decision variable yv,i,j = 1 be redefined to indicate that human v 2 V

should travel from location i 2 ��
v,j to location j 2 �+

v . The human routing model presented below
incorporates Constraint (46), which is modified from Constraint (22) to ensure that every human
picker only leaves a picking location after performing both item picking and placing. Thus, the
human-only problem becomes a VRP with the addition of packing station queueing.

Min m (45)

s.t. tv,j � tv,i +
⇣

s

pick
v,i + s

place
v,i + ⌧v,i,j

⌘

yv,i,j �M(1� yv,i,j)

8 v 2 D, j 2 �+
v , i 2 {��

v,j \ I}, (46)

Constraints (2), (4), (15)� (20), (25)� (29), (33)� (40).

4. Numerical analysis

A series of numerical studies was conducted to (1) assess the impact of warehouse layout con-
figurations on the performance of PPT-VRP systems, and (2) quantify the relative impacts of
adding picker or transporter robots, increasing picker speeds, or increasing transporter capacities.
All computational work was conducted on a PC with an Intel i5-2410m processor and 12 GB RAM
running Microsoft Windows 8 in 64-bit mode. The PPT-VRP models were solved by Gurobi 6.0.3
(Gurobi Optimization 2016) via Python version 2.7.5.

4.1 Test instance creation

Eighteen di↵erent warehouse layouts were generated, each of which is characterized by the number
of vertical picking aisles (PAs), the number of horizontal cross aisles (CAs), and the location
of the depot. Specifically, these test layouts feature either 2, 6, or 10 PAs; 2, 3, or 4 CAs; and
either traditional or centrally-located depots. Traditional depots (TDs) are typically located at the
horizontal midpoint along the lower boundary of the warehouse, while less-common central depots
(CDs) are located in the middle of the warehouse.

Consistent with the human-based warehousing literature (e.g., Pan, Wu, and Chang (2014)), we
consider CA widths of 10 feet, PA widths of 6 feet, and storage racks with footprints of 1-foot
wide by 5-feet deep. Because both the Fetch and Freight robots have bases of 22-inches in diameter
(Wise et al. 2016), three robots can occupy a PA side-by-side with room to spare. Thus, aisle
blocking is not considered in the numerical analysis.

Each layout contains 460 ± 20 picking locations, with slight variations owing to the loss of
picking locations surrounding CDs. Furthermore, changes in the numbers of PAs and CAs a↵ect
the quantity of storage locations. For example, as noted by Roodbergen and de Koster (2001a),
adding CAs increases the space requirements of a warehouse. Two of the generated warehouse
layouts are illustrated in Figure 3.

Three metrics are employed to quantify the di↵erences among the generated layouts. These
include the aspect ratio (↵), the average distance from the depot to each picking location (ADFD),
and the average distance between picking locations (ADBPL). Table 3 provides a summary, along
with the total space requirements and the number of storage locations. The ADFD and ADBPL
metrics have been widely used to estimate the travel distances of di↵erent warehouse picker routing

12
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(a) A warehouse with a traditional depot, 10 PAs, and 2 CAs. There are 440 storage locations in this 595-square-meter facility,
identified as Layout 7 in Table 3.

(b) A warehouse with a central depot, 6 PAs and 4 CAs. There are 454 storage

locations in this 651-square-meter facility, identified as Layout 15 in Table 3.

Figure 3.: Illustrations of two generated layouts.

policies (e.g., Ozturkoglu, Gue, and Meller (2012)). Note that layouts with traditional depots have
a higher ADFD, but a slightly lower ADBPL, than layouts with centrally-located depots.

For each layout, 300 randomly-generated 5-item pick lists were created, resulting in 5,400 test
instances. The average computational time for solving a 5-item problem to optimality was 1.9
seconds, with a maximum time of 190 seconds. A uniform storage policy is applied, as per previous
batch order picking research (e.g., Roodbergen, Vis, and Taylor (2015)). The use of fixed pick
list sizes is common in the order picking literature (e.g., Pan, Wu, and Chang (2014); Shqair,
Altarazi, and Al-Shihabi (2014)). However, while some studies considered pick list sizes ranging
from 4 to 80 items, the complexity of the PPT-VRP would require excessive computational time
to obtain provably optimal solutions for larger pick lists. Note that the PPT-VRP – which extends
the classical VRP to include heterogeneous vehicles, vehicle coordination constraints, and a min-
max objective function – is an NP-hard problem, as it includes the single-vehicle TSP as a special
case. Although employing heuristic methods would provide solutions to larger-scale problems, these
would not be provably optimal. As such, any analysis regarding the impacts of layout configurations
would be subject to an uncertain optimality gap.

Picker robots travel at a speed of 1.0 m/s, while transport robots travel at 2.0 m/s (Wise et al.
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Table 3.: A summary of warehouse designs generated for the numerical analysis. Layout 7 is shown
in Figure 3a, while Layout 15 is shown in Figure 3b.

Layout Parameters Layout Attributes
Depot # of # of ADFD ADBPL # of Storage Space

Layout ID Type PAs CAs ↵ [m] [m] Locations Req. [m2]
1

TD

2 2 0.26 22.82 19.90 456 368.64
2 2 3 0.25 23.74 16.65 460 386.48
3 2 4 0.24 24.66 16.53 464 404.31
4 6 2 1.78 17.48 18.50 448 481.61
5 6 3 1.52 19.10 17.09 456 561.88
6 6 4 1.32 20.71 17.62 464 642.15
7 10 2 4 20.67 23.40 440 594.58
8 10 3 3.2 22.58 22.89 460 743.22
9 10 4 2.67 22.89 23.84 480 891.87
10

CD

2 2 0.25 12.07 20.82 456 386.48
11 2 3 0.24 12.19 16.89 458 389.45
12 2 4 0.23 13.32 17.50 464 422.15
13 6 2 1.71 16.70 19.01 448 499.45
14 6 3 1.52 12.22 17.18 450 561.88
15 6 4 1.32 14.37 18.04 454 651.06
16 10 2 3.81 20.49 24.08 456 624.31
17 10 3 3.2 16.77 22.98 456 743.22
18 10 4 2.67 19.00 24.14 466 891.87

2016). Each picker robot is assumed to require 5-seconds to pick up or place an item into a tote.
Humans are assumed to travel at 0.6 m/s with a cart, and 1 m/s without; humans require 1.5
seconds to pick up and place an item into a cart (Yu and de Koster 2010).

The tote drop-o↵ time is assumed to be 5 seconds for either transport robots or humans. The
capacity of each transporter is varied, such that each may hold 1, 3, or 5 items in a tote. This
allows cases where a transporter with relatively low capacity must revisit the depot to fulfill a pick
list. No capacity limitations are placed on human-based operations. The experimental parameters
are summarized in Table 4.

Table 4.: A summary of the experimental parameter setting.

Parameter Levels
Number of CAs 2, 3, 4
Number of PAs 2, 6, 10
Depot Type CD, TD
Number of Pickers 1, 2, 3
Number of Transporters 1, 2, 3
Transporter Payload Capacity Low (1 item), Medium (d|I|/2e), High (|I|)

4.2 Relationships between layout designs and robot fleet composition

Three order-picking systems are evaluated to determine the degree to which warehouse layouts
impact the relative performance of robotic-based picker systems against traditional human-based
picking operations. The first is based on the Fetch and Freight picker and transporter robots,
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denoted as F&F. The second combines human pickers with robotic transports, denoted as H&F
(or human and Freight). In this follow-pick collaboration, humans perform the tasks of picking
and placing items, while the robotic transporter performs delivery operations. The H&F approach
leverages the shorter item retrieval times for humans versus picker robots and the faster travel
speeds for transporter vehicles versus humans. Nine combinations of pickers and transporters are
considered in the F&F and H&F systems, from one picker and one transporter (1/1), to three pickers
and three transporters (3/3). Finally, the third system considers a single human in a traditional
picking system, which serves as a baseline of comparison against the F&F and H&F systems.

In the following analysis, “percentage improvement” refers to the improvement in makespan (i.e.,
decision variable m) relative to that of a traditional human-based system with a single worker. It
is important to note that the absolute e�ciency improvements are not of significant value, since,
for example, it is clear that the case of three pickers and three transporters is expected to be more
e�cient than the single human case. Instead, the focus is on the comparison of relative percentage
improvements between the di↵erent factor combinations (e.g., comparing 2/2 to 3/1).

There are numerous interaction e↵ects among warehouse layout properties and the robot fleet
composition. While the following study did not consider a full factorial design of experiments or the
use of ANOVA, the focus is on the overall trends and relationships among key problem parameters.

4.2.1 Impacts of PAs, CAs, and depot location

Table 5 highlights the performance e�ciency impacts associated with changing the numbers of cross
aisles and picking aisles. This table reveals that additional PAs lead to e�ciency improvements.
While neither the ADBPL nor the ADFD exhibit a consistent trend as the number of PAs increase
(both metrics decrease for 6 PAs and then increase for 10 PAs), note that the ratio of ADBPL to
ADFD increases. Conversely, as the number of CAs increases, the ADBPL:ADFD ratio decreases.
This corresponds to a decrease in the percentage improvement over the single-human system. This
is consistent with Roodbergen and de Koster (2001a) in the context of human-only systems, who
note that increasing the number of CAs might not improve performance despite creating more
picking route options.

Table 5.: Percentage improvement over a single human picker for combinations of pick- and cross-
aisles (as summarized in the northwest corner of the table). The corresponding ADBPL and ADFD
are in units of meters, while the ratio of these distances is unitless.

CAs
2 3 4 Avg ADBPL ADFD ADBPL:ADFD

2 37.2 35.7 35.6 36.1 18.0 18.1 1.00
PAs 6 40.4 41.1 39.5 40.4 17.9 16.8 1.07

10 42.7 42.6 42.4 42.6 23.6 20.4 1.15
Avg 40.1 39.8 39.2

ADBPL 21.0 18.9 19.6
ADFD 18.4 17.8 19.2

ADBPL:ADFD 1.14 1.07 1.02

The impacts of traditional versus centrally-located depots are shown in Table 6, which reveals
that CDs outperform TDs by 4.4% overall and by 7.9% when low-capacity transporters are em-
ployed. This table also shows that, with low-capacity transporters and a traditional depot, a 1-picker
1-transporter combination performs worse than a single human worker.

In Figure 4 the relationship between ADFD and depot location is highlighted. In particular, the
higher ADFD associated with TDs makes the F&F system more competitive with H&F, as the
longer travel distances for the transporter o↵set the faster item retrieval times of the picker.

15



February 22, 2019 International Journal of Production Research RoboticsInOrderPicking˙IJPR˙prepub

Table 6.: Percentage improvement over a single human picker, as categorized by transporter ca-
pacity, depot type, and mix of picker/transporter quantities.

Depot Picker/Transporter Combination
Cap. Type 1/1 1/2 1/3 2/1 2/2 2/3 3/1 3/2 3/3 Avg

1
TD -0.2 24.5 27.2 2.6 41.5 49.6 2.6 42.1 52.9 27.0
CD 10.2 24.9 25.9 18.0 50.0 54.9 18.0 51.6 60.2 34.9

3
TD 24.0 27.5 27.5 38.0 51.0 51.0 39.8 56.1 56.5 41.3
CD 25.1 26.1 26.1 43.4 55.7 55.7 46.1 62.5 63.2 44.9

5
TD 28.1 28.2 28.2 45.7 51.8 51.8 49.2 57.2 57.6 44.2
CD 26.0 26.1 26.1 46.9 55.7 55.7 51.5 62.5 63.2 46.0

TD Avg 17.3 26.7 27.6 28.8 48.1 50.8 30.5 51.8 55.6 37.5
CD Avg 20.5 25.7 26.0 36.1 53.8 55.4 38.5 58.9 62.2 41.9
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Figure 4.: As the ADFD increases, the relative performance of F&F to H&F has an improving
trend. Note that TDs tend to have a larger ADFD than CDs.

4.2.2 Impacts of picker type and robot fleet properties

Table 7 shows the relationships among transporter capacity, picker type (Fetch versus human),
and the picker/transporter mix. As previously observed, the H&F systems are more e�cient than
their F&F counterparts, as the human picker is assumed to grasp items faster than the robot.
When transporter capacity is su�cient to hold all of the items on the pick list, there is no benefit
associated with having more transporters than pickers. In such high-capacity cases, each transporter
simply follows a picker during the item retrieval process. However, when transporter capacity is
low, having more transporters than pickers is advantageous, as low-capacity transporters must
make multiple visits to the packing station.

4.3 Improving system e�ciency by modifying the robot fleet

We now turn our attention to the question of how best to modify the order picker assortment.
Such an action would be relevant to a company considering changes to an existing fleet of robots.
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Table 7.: Percentage improvement over a single human picker, as categorized by transporter ca-
pacity, picker type (Fetch vs. human), and mix of picker/transporter quantities.

Picker Picker/Transporter Combination
Cap. Type 1/1 1/2 1/3 2/1 2/2 2/3 3/1 3/2 3/3 Avg

1
F -3.2 14.5 15.4 3.5 41.2 46.8 3.5 42.8 53.2 24.2
H 13.2 34.9 37.8 17.1 50.4 57.7 17.1 50.9 59.9 37.7

3
F 13.7 15.4 15.4 34.1 47.3 47.3 36.8 55.3 55.9 35.7
H 35.4 38.1 38.1 47.4 59.3 59.3 49.1 63.3 63.8 50.4

5
F 16.1 16.1 16.1 39.7 48.1 48.1 44.8 56.3 57.0 38.0
H 38.1 38.1 38.1 52.9 59.3 59.3 55.9 63.4 63.8 52.1

F Avg 8.9 15.4 15.6 25.8 45.5 47.4 28.4 51.5 55.4 32.6
H Avg 28.9 37.0 38.0 39.1 56.4 58.8 40.7 59.2 62.5 46.7

In particular, the following analysis considers four types of fleet enhancements:

• Add a picker (denoted as +1P);
• Add a transporter (+1T);
• Increase transporter capacity (+2C), where capacities are 1, 3, or 5 units; or
• Upgrade picker grasp and place speeds to match human capabilities (F-to-H), which is equiv-

alent to replacing a Fetch robot with a human picker.

As in the previous analysis, we limit the number of pickers and transporters to 3, and the capacity
of transporters to 5. Thus, +1P (+1T) is not an option if 3 pickers (transporters) are already in
the system, and +2C is not an option for transporters that already have a capacity of 5 units.
Transporters with a capacity of 1, 3, or 5 items are denoted as low (L), medium (M), or high (H),
respectively. Vehicle quantities are represented as the number of pickers / number of transporters /
capacity of transporters. For example, 2/1/M represents a system with 2 pickers and 1 transporter
with a medium (3-item) capacity.

ADFD and ADBPL are e↵ective metrics for determining the fleet enhancements that lead to the
greatest system performance improvements, as illustrated in Figure 5. Each plot is labeled with the
initial quantities of picker and transporter robots. Colors in the plots indicate the enhancements
producing the greatest e�ciency improvements among all possible modifications and capacity levels.
For example, the green area in the 1P/1T plot indicates that the e�ciency improvement achieved
by performing +1T in the 1/1/L situation is not only greater than the improvements realized by
executing any of the other three actions in the 1/1/L scenario, but also greater than those resulting
from implementing any of the four modifications in the 1/1/M and 1/1/H systems.

The vehicle combinations may be partitioned into four groups, allowing a categorization of the
most beneficial fleet enhancements, as summarized in Table 8.

In the case of just one picker and one transporter (Group 1), the interplay between ADFD
and ADBPL is important. When both ADFD and ADBPL are low, F-to-H yields the greatest
improvement because the faster robot travel speeds provide less benefit for shorter travel distances.
However, when the ADFD and ADBPL are both high, the transporter reaches the picking locations
after the picker, since the influence of the ADFD on the transporters is greater than that of the
ADBPL on the pickers. Thus, adding transporter capacity is preferred. When the ADFD is high
but the ADBPL is low, adding a transporter helps o↵set the additional distance from the packing
location. Conversely, when the ADBPL is high but the ADFD is low, adding a picker is preferable
since the transporter tends to arrive at the picking locations before the picker, which must travel
a longer distance between locations.

If the number of transporters exceeds the number of pickers (Group 2), ADBPL is the primary
determinant for making fleet changes. When the ADBPL is low, faster picker grasping and placing
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Figure 5.: Determining the most beneficial enhancements to a robot picker fleet via the ADFD and
ADBPL metrics. Each subplot represents an initial combination of picker/transporter quantities.
These subplots have been grouped according to combinations exhibiting similar characteristics.

Table 8.: Most beneficial fleet enhancement as a function of ADFD, ADBPL, and initial fleet
composition.

Group 1 Group 2 Group 3 Group 4
2P/2T, 2P/3T,

1P/1T 1P/2T, 1P/3T 2P/1T, 3P/1T 3P/2T, 3P/3T
ADFD ADBPL (Insuf. P & T) (Insuf. P) (Insuf. T) (Suf. P & T)
Low Low F-to-H F-to-H +1T F-to-H
Low High +1P +1P +1T F-to-H
High Low +1T F-to-H +2C +2C
High High +2C +1P +2C +2C

Key Metric: Both ADBPL ADFD ADFD

speeds (F-to-H) are desirable. However, when ADBPL is high, the time savings associated with
adding a picker (thus allowing the pickers to divide the workload) are greater than any speed
improvements o↵ered by F-to-H. As expected, adding transporters or transporter capacity is not
beneficial for this group.
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If the system has more pickers than transporters (Group 3), the ADFD dominates the decision-
making process. Adding transporter capacity is most beneficial when ADFD is high, as this reduces
the frequency with which the transporters must travel between picking locations and the depot.
However, when ADFD is low, adding transporters is preferred (particularly if these transporters
have low capacity relative to the pick list size).

ADFD is also the key metric in Group 4, which contains larger quantities of pickers and trans-
porters than the other groups. As in Group 3, increasing transporter capacity is most beneficial
when ADFD is high. However, improving picker capabilities (F-to-H) is preferable for low ADFD.
Note that the threshold defining low vs. high ADFD is a function of the ratio of transporters to
pickers; as this ratio increases, so to does the preference to enhance picker capabilities (i.e., F-to-H).

4.3.1 System e�ciency improvement within larger warehouses

Two additional studies were conducted with larger pick lists in larger warehouses. The first study
considered a warehouse with a TD, 6 CAs, 20 PAs, and dimensions of 36.58 by 97.54 meters.
There are 2,520 storage locations in this 3,567-square-meter facility. For this layout, 300 randomly-
generated 10- and 20-item pick lists were created under a uniform storage policy. Similar to the
prior analysis, we investigate the makespan improvement associated with (1) adding a picker; (2)
adding a transporter; (3) increasing the transporter capacity by 5 units for the 10-item problems, or
by 10 units for the 20-item problems; and (4) increasing the pick/place speeds of the picker robot.
The default payload capacity of the transporter is one-half of the pick list size (i.e., “medium”
capacity). The case of a single picker and a single transporter serves as a baseline for comparison.

A total of 3,000 test problems were solved – 2 levels of pick list sizes, each associated with 300
pick lists and 5 vehicle configurations (the baseline plus the 4 modifications). The larger-sized pick
lists require additional computational time for Gurobi. Therefore, we set a 10-minute cuto↵ time for
the 10-item problems and a 20-minute cuto↵ time for the 20-item problems. The 10-item problems
had an average optimality gap of 14.5%, while the 20-item problems had an average gap of 18.1%.
Although these gaps are rather large, we re-ran several of the test instances with a 6-hour cuto↵ time
and discovered that the incumbent solutions remained unchanged, but the lower bounds increased
(indicative of weak lower bounds provided by the LP relaxation of the MILP formulation). Thus,
these reported optimality gaps are likely inflated. We speculate that there are two primary reasons
for these gaps to be larger than what is typically found with classical VRPs. First, the PPT-VRP
uses a min-max objective, which likely results in the loose lower bound. Second, the PPT-VRP
includes coordination constraints among the picker and transporter vehicles, which increases the
di�culty of solving the problem within short cuto↵ times.

Figure 6 illustrates the preferred fleet modifications for the first study as a function of ADFD and
ADBPL. For 10-item problems (left figure), it is generally most beneficial to add a picker (+1P).
However, when ADFD is high and ADBPL is low, adding a transporter (+1T) and increasing
capacity (+5C) are preferable. This is consistent with our previous findings for smaller warehouses
with smaller pick lists. However, while the smaller warehouses also benefitted from improving
picker capabilities (i.e., F-to-H), in the larger warehouses with 10 items faster pick/place times are
dominated by the longer required travel distances.

Conversely, when considering 20-item pick lists in the larger warehouse (right plot of Figure
6), we see that F-to-H becomes more beneficial. We observe that the shaded region for 20-item
problems is smaller than the 10-item problems, indicating the convergence of ADFD and ADBPL
as more items are added to a pick list. The combination of larger pick lists and shorter travel
distances places more importance on reducing the pick/place time. For this reason, we also note
that adding a transporter becomes less beneficial in the 20-item problems.

The second study considered an even larger warehouse, with an area of 87,334 square meters
(roughly 303 by 288 meters). This is similar in size to the recently-constructed one-million square
foot warehouses of Amazon (Litten 2014) and Tesla (Kessler 2016). The warehouse in this second
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Figure 6.: Recommended fleet enhancements for the first case study with 10- and 20-item pick lists.

study has a TD, 3 CAs, 90 PAs, and 165,660 racks. We generate 40 10-item pick lists under a
uniform storage policy.

Nine vehicle combinations (from 1 picker / 1 transporter to 3 pickers / 3 transporters) were
considered, along with three levels of payload capacity (low of 1, medium of 5, and high of 10).
Both the F&F and H&F systems were investigated, resulting in 2,160 test problems. These problems
were solved via Gurobi, with a cuto↵ time of 10 minutes per problem. The average optimality gap
was 12.6% (again, this large gap is likely due to the loose bound of the LP relaxation).

Figure 7 illustrates the most beneficial fleet modifications for the second study, in which travel
distances are much longer due to the size of the warehouse. We note the dominance of adding
capacity, particularly in the cases where the number of transporters is less than or equal to the
number of pickers (i.e., 1P/1T, 2P/1T, 2P/2T, 3P/1T, 3P/2T, and 3P/3T).

For a baseline of 1P/1T, adding a transporter is most beneficial when ADFD and transporter
capacity are low. However, adding capacity becomes a better choice when the ADFD increases;
the size of the warehouse makes it costly for transporters to revisit the packing area (as is required
when transporter capacity is low).

For the case of excess transporters (i.e., 1P/2T and 1P/3T), adding a picker provides the most
impact in general. This is consistent with the previous analysis that found that F-to-H becomes less
e↵ective under larger warehouses. We also observe that adding capacity o↵ers the most improve-
ment for 1P/2T when the ADBPL is low. Furthermore, for 2P/3T with high payload capacity,
adding a picker is preferred when both the ADFD and the ADBPL are low, which indicates that
three high capacity transporters can support at least three pickers well under this situation. Oth-
erwise, adding transporter capacity is desirable when the payload capacity is low.

This study with larger warehouses provides several managerial insights. First, increasing the
speed of item pickup/place activities provides less impact under large scale warehouses with smaller
pick lists, but becomes more important when the pick list size increases. Second, in larger ware-
houses, increasing the capacity of the transporters is more beneficial than adding more low-capacity
transporters. This might be an attractive finding for managers, as adding transporter capacity
(perhaps via larger totes) may be less expensive than purchasing additional transporters. More-
over, consistent with the previous findings, it is often preferable to have at least as many pickers
as transporters, particularly if the transporters are of high capacity. Finally, the analysis again
demonstrates that the performance of the order-picking system is dependent upon the ADFD and
ADBPL metrics.

5. Conclusions and future research opportunities

This paper was motivated by the availability of specialized “picker” robots that can retrieve items
from storage locations and “transport” robots that can bring these items to a packing station.
Based on these capabilities, a new problem, the PPT-VRP, was defined to route these mobile
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Figure 7.: Recommended fleet enhancements for the second case study with 10-item pick lists.

robots to minimize the time required to retrieve a collection of items from within a warehouse.
An MILP formulation of this problem was presented and was utilized to examine the interactions
between warehouse configurations and the composition of the fleet of order-picking robots.

The numerical analysis provided several key insights. From a warehouse layout perspective, robot
order-pickers o↵er the greatest improvements over traditional human-picker operations when the
ratio of ADBPL to ADFD is higher. This occurs when there are more PAs or fewer CAs. Fur-
thermore, centrally-located packing stations lead to consistently better performance over packing
stations located on the periphery of the warehouse.

From the perspective of configuring the robot fleet, in general, increasing the picker robot’s
grasp-and-place speed is more beneficial when the ADFD and ADBPL are both low or there are
su�cient numbers of pickers and high-capacity transporters. When there are numerous low-capacity
transporters but relatively few pickers, adding a picker is preferable if the ADBPL is high; increasing
the grasp-and-place speed of a picker robot is preferable if ADBPL is low. If there are numerous
pickers but few low-capacity transporters, adding transporter capacity is more e↵ective when ADFD
is high; adding a transporter is more e↵ective when ADFD is low. When the numbers of pickers
and low-capacity transporters are both su�cient, adding transporter capacity is preferable if the
ADFD is high, but increasing grasp-and-place speed is preferable if the ADFD is low. Additionally,
the impacts of the item grasp-and-place speeds decrease as the number of pickers increases or as
the size of the warehouse increases, and the impact of the transporters’ capacities decreases as the
number of transporters increases. Furthermore, the impact of transporter capacities increases for
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larger warehouses.
This work provides a foundation for a variety of future research opportunities. For example,

an extension to the PPT-VRP that considers aisle congestion could be of importance to practi-
tioners. While the proposed model is appropriate for analyzing the relationships between layout
configurations and robot system parameters, a separate approach is required to monitor and guide
the robots in action. This might take the form of dispatching rules that can be implemented dy-
namically, taking into consideration the variability in the robots’ pick and place times. Due to
the NP-hard nature of the PPT-VRP, large-scale pick lists were not considered in the analysis of
optimal solutions in this study. Therefore, e�cient heuristics for large-scale problems are desir-
able. From a warehouse operations perspective, an analysis of di↵erent storage policies, to extend
beyond the uniform policies considered herein, would be valuable. The determination of suitable
order-batching methodologies remains an open topic in the context of robot-based warehousing.
Another related problem is the use of robots for re-stocking activities, where transporter robots
bring items from the depot back into the warehouse and picker robots return items to the shelves.
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